Advertisement

Transport of Superthermal Electrons: General Analysis

  • George V. Khazanov
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 372)

Abstract

Superthermal electrons are one of the major energy players in the inner magnetosphere, and are responsible for the formation of self-consistent electric potentials in some space plasma regions. Numerous processes are involved in the determination of their distribution function, and only a kinetic approach provides the proper tool to treat this component of the inner magnetosphere. Because of the relative complexity of the kinetic equation solution, analytical investigations of some simplified kinetic problems are very useful because they help us gain physical insight into how the system responds to various physical processes and external boundary conditions. Solutions to these simplified problems also provide us a convenient method to test the validity of complicated numerical models where superthermal electrons are involved.

Keywords

Field Line Pitch Angle Magnetic Field Line Thermal Electron Coulomb Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alfvén, H., Fälthammar, C.-G.: Cosmical Electrodynamics, Fundamental Principles. Oxford University Press, New York (1963)MATHGoogle Scholar
  2. Ashour-Abdalla, M., Kennel, C.F.: Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res. 83, 1531–1543 (1978)ADSCrossRefGoogle Scholar
  3. Barakat, A.R., Schunk, R.W.: Effect of the hot electrons on the polar wind. J. Geophys. Res. 89, 9771–9783 (1984)ADSCrossRefGoogle Scholar
  4. Chiu, Y.T., Schulz, M.: Self-consistent particle and parallel electrostatic field distributions in the magnetospheric–ionospheric auroral region. J. Geophys. Res. 83, 629–642 (1978)ADSCrossRefGoogle Scholar
  5. Cushman, G.W., Farwell, L., Godden, G., Rense, W.A.: Solar line profiles of He I 584 A and He II 304 A. J. Geophys. Res. 80, 482–486 (1975)ADSCrossRefGoogle Scholar
  6. Davidson, G., Walt, M.: Loss cone distributions of radiation belt electrons. J. Geophys. Res. 82, 48–54 (1977)ADSCrossRefGoogle Scholar
  7. Dory, R.A., Guest, G.E., Harris, E.G.: Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Lett. 14, 131–133 (1965)ADSCrossRefGoogle Scholar
  8. Etcheto, J., Gendrin, R., Solomon, J., Roux, A.: A self-consistent theory of magnetospheric ELF hiss. J. Geophys. Res. 78, 8150–8166 (1973)ADSCrossRefGoogle Scholar
  9. Eviatar, A., Lenchek, A.M., Singer, S.F.: Distribution of density in an ion-exosphere of a non-rotating planet. Phys. Fluids 7, 1775–1779 (1964)ADSCrossRefGoogle Scholar
  10. Galperin, Y.I. Mulyarchik, T.M.: On the height distribution of photoelectrons. Kosmich. Issledov. (in Russian) 4, 932–941 (1966)Google Scholar
  11. Gastman, I.J.: Theoretical investigation and plasma line measurements of conjugate photoelectrons in the ionosphere. Ph.D. Thesis, University of Michigan, Ann Arbor, MI (1973)Google Scholar
  12. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic, New York (1980)MATHGoogle Scholar
  13. Huang, T.S., Birmingham, T.J.: The polarization electric field and its effects in an anisotropic rotating magnetospheric plasma. J. Geophys. Res. 97, 1511–1519 (1992)ADSCrossRefGoogle Scholar
  14. Jasperse, J.R., Smith, E.R.: The photoelectron flux in the Earth’s ionosphere at energies in the vicinity of photoionization peaks. Geophys. Res. Lett. 5, 843–846 (1978)ADSCrossRefGoogle Scholar
  15. Kennel, C., Petschek, H.: Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966)ADSCrossRefGoogle Scholar
  16. Khazanov, G.V.: The Kinetics of the Electron Plasma Component of the Upper Atmosphere. Nauka, Moscow (1979) [English translation: #80-50707, National Translation Center, Washington, DC (1980)]Google Scholar
  17. Khazanov, G.V., Gefan, G.D.: The kinetics of ionosphere–plasmasphere transport of superthermal electrons. Phys. Solariterr. Potsdam 19, 65–80 (1982)Google Scholar
  18. Khazanov, G.V., Koen, M.A., Burenkov, S.I.: Analysis of plasmaspheric passage of superthermal electrons. Phys. Solariterr. Potsdam 15, 91–106 (1981)Google Scholar
  19. Khazanov, G.V., Gombosi, T.I., Nagy, A.F., Koen, M.A.: Analysis of the ionosphere–plasmasphere transport of superthermal electrons. 1. Transport in the plasmasphere. J. Geophys. Res. 97, 16887–16895 (1992)ADSCrossRefGoogle Scholar
  20. Khazanov, G.V., Neubert, T., Gefan, G.D.: A unified theory of ionosphere-plasmasphere transport of suprathermal electrons. IEEE Trans. Plasma Sci. 22, 187–198 (1994)Google Scholar
  21. Khazanov, G.V., Liemohn, M.W., Moore, T.E.: Photoelectron effects on the self-consistent potential in the collisionless polar wind. J. Geophys. Res. 102, 7509–7521 (1997)ADSCrossRefGoogle Scholar
  22. Khazanov, G.V., Liemohn, M.W., Krivorutsky, E.N., Moore, T.E.: Generalized kinetic description of a plasma in an arbitrary potential energy structure. J. Geophys. Res. 103, 6871–6889 (1998)ADSCrossRefGoogle Scholar
  23. Knight, S.: Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973)ADSCrossRefGoogle Scholar
  24. Koen, M.A., Modeling of the ionosphere in applied problems of geophysics, Irkutsk, 1983Google Scholar
  25. Krinberg, I.A.: Description of the photoelectron interaction with ambient electrons in the ionosphere. Planet. Space Sci. 21, 523–525 (1973)ADSCrossRefGoogle Scholar
  26. Krinberg, I.A.: The Kinetics of Electrons in the Earth’s Ionosphere and Plasmasphere. Nauka, Moscow (1978)Google Scholar
  27. Krinberg, I.A., Matafonov, G.K.: Coulomb collision-induced photoelectron trapping by the geomagnetic field and electron gas heating in the plasmasphere. Ann. Geophys. 34, 89–96 (1978)Google Scholar
  28. Landau, L.D.: Kinetic equation for Coulomb interactions. Phys. Z. Sowjetunion 10, 154–164 (1936)MATHGoogle Scholar
  29. Lejeune, J., Wormser, F.: Diffusion of photoelectrons along a field line inside the plasmasphere. J. Geophys. Res. 81, 2900–2916 (1976)ADSCrossRefGoogle Scholar
  30. Lemaire, J.: Rotating ion exospheres. Planet. Space Sci. 24, 975–985 (1976)ADSCrossRefGoogle Scholar
  31. Lemaire, J., Scherer, M.: Model of the polar ion-exosphere. Planet. Space Sci. 18, 103–120 (1970)ADSCrossRefGoogle Scholar
  32. Lemaire, J., Scherer, M.: Simple model for an ion-exosphere in an open magnetic field. Phys. Fluids 14, 1683–1694 (1971)ADSCrossRefGoogle Scholar
  33. Lemaire, J., Scherer, M.: Ion-exosphere with asymmetric velocity distribution. Phys. Fluids 15, 760–766 (1972)ADSCrossRefGoogle Scholar
  34. Lemaire, J., Scherer, M.: Plasma sheet particle precipitation: A kinetic model. Planet. Space Sci. 21, 281–289 (1973)ADSCrossRefGoogle Scholar
  35. Lemaire, J., Scherer, M.: Ionosphere-plasmasheet field-aligned currents and parallel electric fields. Planet. Space Sci. 22, 1485–1490 (1974)ADSCrossRefGoogle Scholar
  36. Liemohn, M.W.: Yet another caveat to using the Dessler–Parker–Sckopke relation. J. Geophys. Res. 108, 1251 (2003). doi: 10.1029/2003JA009839CrossRefGoogle Scholar
  37. Longmire, C.: Plasma Physics. Atomizdat, Moscow (1966)Google Scholar
  38. Lummerzheim, D., Rees, M.N., Anderson, H.R.: Angular dependent transport of auroral electrons in the upper atmosphere. Plant. Space Sci. 37, 109–129 (1989)Google Scholar
  39. Miller, R.H., Khazanov, G.V.: Self-consistent electrostatic potential due to trapped plasma in the magnetosphere. Geophys. Res. Lett. 20, 1331–1334 (1993)ADSCrossRefGoogle Scholar
  40. Mukai, T., Hirao, K.: Rocket measurement of the differential energy spectrum of the photoelectrons. J. Geophys. Res. 78, 8395–8398 (1973)ADSCrossRefGoogle Scholar
  41. Nagy, A.F., Banks, P.M.: Photoelectron fluxes in the ionosphere. J. Geophys. Res. 75, 6260–6270 (1970)ADSCrossRefGoogle Scholar
  42. Olsen, R.C., Scott, L.J., Boardsen, S.A.: Comparison between Liouville’s theorem and observed latitudinal distributions of trapped ions in the plasmapause region. J. Geophys. Res. 99, 2191–2203 (1994)ADSCrossRefGoogle Scholar
  43. Persson, H.: Electric field along a magnetic field line of force in a low-density plasma. Phys. Fluids 6, 1756–1759 (1963)ADSCrossRefGoogle Scholar
  44. Pierrard, V., Lemaire, J.: Lorentzian ion exosphere model. J. Geophys. Res. 101, 7923–7934 (1996)ADSCrossRefGoogle Scholar
  45. Pierrard, V., Khazanov, G.V., Lemaire, J.: Current–voltage relationship. J. Atmos. Solar-Terr. Phys. 69, 2048–2057 (2007)ADSCrossRefGoogle Scholar
  46. Polyakov, V.M., Khazanov, G.V., Koen, M.A.: Ionosphere–plasmasphere photoelectron transport. Phys. Solariterr. Potsdam 10, 93–108 (1979)Google Scholar
  47. Popov, G.V., Khazanov, G.V.: A solution of the kinetic equation for ionospheric photoelectrons with consideration of both conjugate regions. Cosmic Res. 12, 218–223 (1974)ADSGoogle Scholar
  48. Rasmussen, C.E., Sojka, J.J., Schunk, R.W., Wickwar, V.B., de la Beaujardiere, O., Foster, J., Holt, J.: Comparison of simultaneous Chatanika and Millstone Hill temperature measurements with ionospheric model predictions. J. Geophys. Res. 93, 1922–1932 (1988)ADSCrossRefGoogle Scholar
  49. Richards, P.G., Torr, D.G.: Auroral Modeling of the 3371 Å Emission Rate: Dependence on Characteristic Electron Energy. J. Geophys. Res. 95(A7), 10, 337–10, 344 (1990)Google Scholar
  50. Roble, R.G., Ridley, E.C.: An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys. 5A, 369–382 (1987)ADSGoogle Scholar
  51. Sanatani, S., Hanson, W.B.: Plasma temperature in the magnetosphere. J. Geophys. Res. 75, 769–775 (1970)ADSCrossRefGoogle Scholar
  52. Schunk, R.W., Hays, P.B.: Photoelectron energy losses to thermal electrons. Planet. Space Sci. 19, 113–117 (1971)ADSCrossRefGoogle Scholar
  53. Schunk, R.W., Nagy, A.F.: Ionospheres. Cambridge University Press, New York (2000)CrossRefGoogle Scholar
  54. Scudder, J.D.: On the causes of temperature change in inhomogeneous low-density astrophysical plasmas. Astrophys. J. 398, 299–318 (1992)ADSCrossRefGoogle Scholar
  55. Serizawa, Y., Sato, T.: Generation of large-scale potential difference by currentless plasma jets along the mirror field. Geophys. Res. Lett. 11, 595–598 (1984)ADSCrossRefGoogle Scholar
  56. Shkarofsky, I.P., Johnston, T.W., Bachinski, M.P.: The Particle Kinetics of Plasmas. Addison-Wesley, London (1966)Google Scholar
  57. Solomon, S.C., Hays, P.B., Abreu, V.J.: The auroral 6300 Å emission: Observations and modeling. J. Geophys. Res. 93, 9867-9882 (1988)Google Scholar
  58. Stasiewicz, K.: The influence of a turbulent region on the flux of auroral electrons. Planet. Space Sci. 33, 591–596 (1985)ADSCrossRefGoogle Scholar
  59. Strickland, D.J., Meier, R.R., Hecht, J.H., Christensen, A.B.: Deducing Composition and Incident Electron Spectra From Ground-Based Auroral Optical Measurements: Theory and Model Results. J. Geophys. Res. 94(A10), 13527–13539, (1989) doi:10.1029/JA094iA10p13527Google Scholar
  60. Summers, D., Thorne, R.M.: The modified plasma dispersion function. Phys. Fluids B 3, 1835–1847 (1991)ADSCrossRefGoogle Scholar
  61. Takahashi, T.: Energy degradation and transport of photoelectrons escaping from the upper ionosphere. Rept. Ionos. Space Res. Jap. 27, 79–86 (1973)Google Scholar
  62. Washimi, H., Katanuma, I.: Numerical BGK-solutions of large scale electrostatic potential in auroral plasmas. Geophys. Res. Lett. 13, 897–900 (1986)ADSCrossRefGoogle Scholar
  63. Whipple, E.C.: The signature of parallel electric fields in a collisionless plasma. J. Geophys. Res. 82, 1525–1531 (1977)ADSCrossRefGoogle Scholar
  64. Wilson, G.R., Khazanov, G.V., Horwitz, J.L.: Achieving zero current for polar wind outflow on open flux tubes subjected to large photoelectron fluxes. Geophys. Res. Lett. 24, 1183–1186 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Goddard Space Flight Center (GSFC) Heliophysics Science Div. (HSD)NASAGreenbeltUSA

Personalised recommendations