Hydrodynamic Description of Space Plasma

  • George V. KhazanovEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 372)


Because of its complexity, major difficulties are encountered in the use of the kinetic equation in the study of various processes in plasma. Thus, the class of problems that can be solved using the kinetic approach is quite limited. Additionally, for a large number of problems, the detailed kinetic description is excessive and only macroscopic parameters like density, bulk velocity, pressure, viscosity tensor, and heat flux are important. These quantities are defined as the corresponding moments of the velocity distribution function. The plasma kinetic description could thus be replaced by a system of velocity moment equations. These moment equations are usually called hydrodynamic or transport equations. The transport equation approach has received a lot of attention because it can handle the core plasma particle and energy flow conditions in the solar–terrestrial environment. Many of the highly nonequilibrium flows found in space plasma are characterized by appreciable temperature anisotropies, i.e., unequal species temperatures parallel and perpendicular to the magnetic field direction. Also, wave–particle interaction processes can dramatically contribute to the formation of these nonequilibrium plasma flows. Therefore, it is necessary to trace the derivation of the different sets of the transport equations in order to understand the applicability of space plasma hydrodynamic theory.


Neutral Particle Hydrodynamic Equation Thermal Electron Collision Term Collisionless Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., Sitenko, A.G., Stepanov, K.N.: Plasma Electrodynamics, vol. 1. Pergamon, Tarrytown, NY (1975)Google Scholar
  2. Alexandrov, A.F., Bogdankevich, L.S. Rukhadze, A.A.: Fundamentals of Electrodynamics of Plasma. Nauka, Moscow (1988)Google Scholar
  3. Banks, P.: Collision frequencies and energy transfer: Electrons. Planet. Space Sci. 14, 1085–1103 (1966)ADSCrossRefGoogle Scholar
  4. Banks, P.M., Holzer, T.E.: Charge exchange and ion diffusion for thermal nonequilibrium conditions. Planet. Space Sci. 16, 1019–1022 (1968)ADSCrossRefGoogle Scholar
  5. Banks, P.M., Kockarts, G.: Aeronomy. Academic, New York (1973)Google Scholar
  6. Barakat, A.R., Schunk, R.W.: Momentum and energy exchange collision terms for interpenetrating bi-Maxwellian gases. J. Phys. D: Appl. Phys. 14, 421–438 (1981)ADSCrossRefGoogle Scholar
  7. Barakat, A.R., Schunk, R.W.: Comparison of transport equations based on Maxwellian and bi-Maxwellian distributions for anisotropic plasmas. J. Phys. D: Appl. Phys. 15, 1195–1216 (1982a)ADSCrossRefGoogle Scholar
  8. Barakat, A.R., Schunk, R.W.: Transport equations for multicomponent anisotropic space plasma: A review. Plasma Phys. 24, 389–418 (1982b)MathSciNetADSCrossRefGoogle Scholar
  9. Barakat, A.R., Schunk, R.W., St.-Maurice, J.P.: Monte Carlo calculations of the O+ velocity distribution in the auroral ionosphere. J. Geophys. Res. 88, 3237–3241 (1983)ADSCrossRefGoogle Scholar
  10. Belikov, V.S., Kolesnichenko, Ya.I., Oraevskii, V.N.: Nonlinear theory of the thermonuclear Alfven plasma instability. Sov. Phys. JETP 39, 828–831 (1974)ADSGoogle Scholar
  11. Braginskii, S.I.: Transport processes in a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 205–311. Consultants Bureau, New York (1965)Google Scholar
  12. Breig, E.L., Lin, C.C.: Excitation of the spin multiplets of the ground state of oxygen by slow electrons. Phys. Rev. 151, 67–79 (1966)ADSCrossRefGoogle Scholar
  13. Burgers, J.M.: Flow Equations for Composite Gases. Academic, New York (1969)zbMATHGoogle Scholar
  14. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, London (1958)Google Scholar
  15. Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann equation and one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. A 236, 112–118 (1956)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. Chodura, R., Pohl, F.: Hydrodynamic equations for anisotropic plasmas in magnetic fields. II. Transport equations including collisions. Plasma Phys. 13, 645–658 (1971)ADSCrossRefGoogle Scholar
  17. Chodura, R., Oraevskii, V., Pohl, F.: Transport coefficients for an anisotropic plasma. In: Geavit, M., Ghica, I., Popescu, A., Nastase, L. (eds.) Proceedings of the 9th International Conference on Phenomena in Ionized Gases, p. 406. Academia RSR, Bucharest (1969)Google Scholar
  18. Clark, D.H., Raitt, W.J., Willmore, A.P.: A measured anisotropy in the ionospheric electron temperature. J. Atmos. Terr. Phys. 35, 63–76 (1973)ADSCrossRefGoogle Scholar
  19. Dalgarno, A., McDowell, M.R., Williams, A.: The mobilities of ions in the unlike gases. Philos. Trans. R. Soc. Lond. A 250, 411–425 (1958)ADSzbMATHCrossRefGoogle Scholar
  20. Demars, H.G., Schunk, R.W.: Transport equations for multispecies plasmas based on individual bi-Maxwellian distributions. J. Phys. D: Appl. Phys. 12, 1051–1077 (1979)ADSCrossRefGoogle Scholar
  21. Gamayunov, K.V., Krivorutsky, E.N., Khazanov, G.V.: Hydrodynamic description of magnetosphere plasma with due regard to the wave activity of Alfven and fast magnetosonic waves. Planet. Space Sci. 39, 1097–1105 (1991)ADSCrossRefGoogle Scholar
  22. Gerjoy, E., Stein, S.: Rotational excitation by slow electrons. Phys. Rev. 97, 1671–1679 (1955)ADSCrossRefGoogle Scholar
  23. Gombosi, T.I., Rasmussen, C.E.: Transport of gyration dominated space plasmas of thermal origin. I. Generalized transport equations. J. Geophys. Res. 96, 7759–7778 (1991)ADSCrossRefGoogle Scholar
  24. Gorbachev, O.A., Khazanov, G.V., Gamayunov, K.V., Krivorutsky, E.N.: A theoretical model for the ring current interaction with the Earth’s plasmasphere. Planet. Space Sci. 40, 859–872 (1992)ADSCrossRefGoogle Scholar
  25. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Gurevich, A.V.: Nonlinear Phenomena in the Ionosphere. Springer, New York (1978)CrossRefGoogle Scholar
  27. Horwitz, J., Banks, P.M.: Ion momentum and energy transfer rates for charge exchange collisions. Planet. Space Sci. 21, 1975–1981 (1973)ADSCrossRefGoogle Scholar
  28. Hubert, D.: Convergence and approximation of auroral ion velocity distribution function. J. Geophys. Res. 87, 8255–8262 (1982)ADSCrossRefGoogle Scholar
  29. Khazanov, G.V.: The Kinetics of the Electron Plasma Component of the Upper Atmosphere. Nauka, Moscow (1979) [English translation: #80-50707, National Translation Center, Washington, DC (1980)]Google Scholar
  30. Khazanov, G.V., Koen, M.A., Konikov, Yu.V., Sidorov, I.M.: Simulation of ionosphere–plasmasphere coupling taking into account ion inertia and temperature anisotropy. Planet. Space Sci. 32, 585–598 (1984)ADSCrossRefGoogle Scholar
  31. Khazanov, G.V., Gombosi, T.I., Gorbachev, O.A., Trukhan, A.A., Miller, R.H.: Thermodynamic effects of the ion-sound instability in the ionosphere. J. Geophys. Res. 99, 5721–5726 (1994)ADSCrossRefGoogle Scholar
  32. Khazanov, G.V., Kozyra, J.U., Gorbachev, O.A.: Magnetospheric convection and the effects of wave–particle interaction on the plasma temperature anisotropy in the equatorial plasma sphere. Adv. Space Res. 17(10) 117–128 (1996)ADSCrossRefGoogle Scholar
  33. Kogan, M.N.: Dynamics of Rarified Gas. Nauka, Moscow (1967)Google Scholar
  34. Konikov, Yu.V.: Hydrodynamic equations in 16-moment approximation allowing for interactions of thermal electrons with ion cyclotron waves in the Earth’s outer plasma sphere. Planet. Space Sci. 38, 709–721 (1990)ADSCrossRefGoogle Scholar
  35. Konikov, Yu.V., Khazanov, G.V.: Estimation of anisotropy of the electron temperature in the midlatitude ionosphere and plasmasphere of the Earth. Geomagn. Aeron. 21, 999–1003 (1981)ADSGoogle Scholar
  36. Konikov, Yu.V., Khazanov, G.V.: Equations of anisotropic hydrodynamics for aeronomy. Phys. Solariterr. Potsdam 19, 103–117 (1982)Google Scholar
  37. Konikov, Yu.V., Khazanov, G.V.: Equations of anisotropic hydrodynamics for electron component of the ionospheric plasma. Planet. Space Sci. 31, 91–98 (1983)ADSCrossRefGoogle Scholar
  38. Konikov, Yu.V., Sidorov, I.M., Khazanov, G.V.: Modeling of ionosphere-plasmasphere interaction with the account of temperature anisotropy. Geomagnetism and Aeronomy 23, 190–193 (1983)Google Scholar
  39. Konikov, Yu.V., Kuzivanov, V.I., Khazanov, G.V.: Hydrodynamics equations for anisotropic plasma. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (in Russian), vol. 50, pp. 164–179. Nauka, Moscow (1980)Google Scholar
  40. Konikov, Yu.V., Gorbachev, O.A., Khazanov, G.V., Chernov, A.A.: Hydrodynamical equations for thermal electrons taking into account their scattering on ion cyclotron waves in the outer plasmasphere of the Earth. Planet. Space Sci. 37, 1157–1168 (1989)ADSCrossRefGoogle Scholar
  41. Korth, A., Kremser, G., Perraut, S., Roux, A.: Interaction of particles with ion-cyclotron waves and magnetosonic waves. Observations from GEOS1 and GEOS2. Planet. Space Sci. 32, 1393–1406 (1984)ADSCrossRefGoogle Scholar
  42. Likhter Ja.I., Larkina, V.I., Mikhailov, Yu.M., Afonin, V.V., Gdalevich, G.L., Serafimov, K.B., Bankov, L.G., Dachev, Ts.P., Trendafilov, N.S., Jiricek, F., Smilauer, J., Triska, P., Voita, J.: ELF–VLF emissions, ion density fluctuations and electron temperature in the ionospheric trough. Space Res. 19, 339–362 (1979)Google Scholar
  43. Mintzer, D.: Generalized orthogonal polynomial solutions of the Boltzmann equation. Phys. Fluids 8, 1076–1090 (1965)ADSzbMATHCrossRefGoogle Scholar
  44. Mitchell, Jr., H.G., Palmadesso, P.J.: A dynamic model for the auroral field line plasma in the presence of field-aligned current. J. Geophys. Res. 88, 2131–2139 (1983)ADSCrossRefGoogle Scholar
  45. Oraevskii, V.N., Chodura, R., Feneberg, W.: Hydrodynamic equations for plasmas in magnetic fields: Collisionless approximation. Plasma Phys. 10, 819–828 (1968)ADSCrossRefGoogle Scholar
  46. Oraevskii, V.N., Konikov, YU.V., Khazanov, G.V.: Transport Processes in Anisotropic Near-Earth Plasmas. Nauka, Moscow (1985)Google Scholar
  47. Schunk, R.W.: Transport equations for aeronomy. Planet. Space Sci. 23, 437–485 (1975)ADSCrossRefGoogle Scholar
  48. Schunk, R.W.: Mathematical structure of transport equations for multispecies flows. Rev. Geophys. Space Phys. 15, 429–445 (1977)ADSCrossRefGoogle Scholar
  49. Schunk, R.W., Nagy, A.F.: Electron temperature in the F region of the Ionosphere: Theory and observations. Rev. Geophys. 16, 355–399 (1978)ADSCrossRefGoogle Scholar
  50. Schunk, R.W, Nagy, A.F.: Ionospheres. Cambridge University Press, New York (2000)CrossRefGoogle Scholar
  51. Schunk, R.W., Watkins, D.S.: Comparison of solutions to the thirteen-moment and standard transport equations for low speed thermal proton flows. Planet. Space Sci. 27, 433–444 (1979)ADSCrossRefGoogle Scholar
  52. Schunk, R.W., Watkins, D.S.: Electron temperature anisotropy in the polar wind. J. Geophys. Res. 86, 91–102 (1981)ADSCrossRefGoogle Scholar
  53. Schunk, R.W., Watkins, D.S.: Proton temperature anisotropy in the polar wind. J. Geophys. Res. 87, 171–180 (1982)ADSCrossRefGoogle Scholar
  54. Shkarofsky, I.P., Johnston, T.W., Bachynski, M.P.: The Particle Kinetics of Plasmas. Addison-Wesley, Reading, MA (1966)Google Scholar
  55. Silin, V.P.: Introduction to the Kinetic Theory of Gases. Nauka, Moscow (1971)Google Scholar
  56. St.-Maurice, J.P., Schunk, R.W.: Use of generalized orthogonal polynomial solutions of Boltzmann’s equations in certain aeronomy problems: Auroral ion velocity distributions. J. Geophys. Res. 81, 2145–2154 (1976)ADSCrossRefGoogle Scholar
  57. St.-Maurice, J.P., Schunk, R.W.: Auroral ion velocity distributions for a polarization collision model. Planet. Space Sci. 25, 243–260 (1977)ADSCrossRefGoogle Scholar
  58. St.-Maurice, J.P., Schunk, R.W.: Ion velocity distributions in the high-latitude ionosphere. Rev. Geophys. Space Phys. 17, 99–134 (1979)ADSCrossRefGoogle Scholar
  59. Takayanagi, K., Itikawa, Y.: Elementary processes involving electrons in the ionosphere. Space Sci. Rev. 11, 380–450 (1970)ADSCrossRefGoogle Scholar
  60. Tanenbaum, B.S.: Plasma Physics. McGraw-Hill, New York (1967)Google Scholar
  61. Tsytovich, V.N.: The Theory of Turbulent Plasma. Atomizdat, Moscow (1971)Google Scholar
  62. Young, D.T., Perraut, S., Roux, A., de Villedary, C., Gendrin, R., Korth, A., Kremser, G., Jones, D.: Wave–particle interactions near \({\Omega _{{\rm{H}}{{\rm{e}}^ + }}}\) observed on GEOS 1 and 2, 1. Propagation of ion cyclotron waves in the He+ rich plasma. J. Geophys. Res. 86, 6755–6772 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Goddard Space Flight Center (GSFC) Heliophysics Science Div. (HSD)NASAGreenbeltUSA

Personalised recommendations