General Description of Wave–Particle Interaction Phenomena

  • George V. KhazanovEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 372)


Wave–particle interactions play fundamental roles in the dynamics and energetics of the inner magnetosphere. To understand these phenomena in detail, some initial knowledge of plasma-wave electrodynamics is required and is presented in Sects. 3.1–3.8. This short introductory material is based on excellent plasma physics books written by Ginzburg and Rukhadze (1975), Akhiezer et al. (1975), Alexandrov et al. (1988), and Stix (1992). The focus in this chapter is on some fundamental modes that can propagate in a magnetized plasma and, specifically, on those that will be considered in later chapters. All the derivations and results presented here, however, are given in a very general form, with a major focus on the kinetic plasma description, that will allow us to use this material for the different wave plasma phenomena in the near-Earth’s plasma. In the final two sections of this chapter, the quasilinear plasma theory and nonlinear drift-kinetic equation are discussed in order to prepare the reader for later material covered in this book.


  1. Aamodt, R.E., Vella, M.C.: Kinetic description of ponderomotive effects in plasma. Phys. Rev. Lett. 39, 1273–1276 (1977)ADSCrossRefGoogle Scholar
  2. Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., Sitenko, A.G., Stepanov, K.N.: Plasma Electrodynamics, vol. 1. Pergamon, Tarrytown, NY (1975)Google Scholar
  3. Alexandrov, A.F., Bogdankevich, L.S. Rukhadze, A.A.: Fundamentals of Electrodynamics of Plasma. Nauka, Moscow (1988)Google Scholar
  4. Barash, Yu. S., Karpman, V.I.: Ponderomotive force of a high-frequency field in media with temporal and spatial dispersion. Sov. Phys. JETP 58, 1139–1148 (1983)Google Scholar
  5. Bernstein, I.B., Catto, J.: Generalized gyrokinetics. Phys. Fluids 28, 1342–1353 (1985)ADSzbMATHCrossRefGoogle Scholar
  6. Boehm, M.H., Carlson, C.W., McFadden, J.P., Clemmons, J.H., Mozer, F.S.: High-resolution sounding rocket observations of large-amplitude Alfvén waves. J. Geophys. Res. 95, 12157–12171 (2000)ADSCrossRefGoogle Scholar
  7. Crary, F.J., Bagenal, F.: Ion cyclotron waves, pickup ions, and Io’s neutral exosphere. J. Geophys. Res. 105, 25379–25389 (2000)ADSCrossRefGoogle Scholar
  8. Ginzburg, V.L., Rukhadze, A.A.: Waves in Magnetoactive Plasmas. Nauka, Moscow (1975)Google Scholar
  9. Grebogi, C., Littlejohn, R.G.: Relativistic ponderomotive Hamiltonian. Phys. Fluids 27, 1996–2004 (1984)ADSzbMATHCrossRefGoogle Scholar
  10. Hastie, R.J., Taylor, J.B., Haas, F.A.: Adiabatic invariants and the equilibrium of magnetically trapped particles. Ann. Phys. (NY) 41, 302–338 (1967)ADSCrossRefGoogle Scholar
  11. Kelley, M.C., Siefring, C.L., Pfaff, R.F., Kintner, P.M., Larsen, M., Green, R., Holzworth, R.H., Hale, L.C., Mitchell, J.D., Le Vine, D.: Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm. 1. Campaign overview and initial ionospheric results. J. Geophys. Res. 90, 9815–9823 (1985)ADSCrossRefGoogle Scholar
  12. Khazanov, G.V., Khabibrakhmanov, I.K., Krivorutsky, E.N.: Interaction between an Alfvén wave and a particle undergoing acceleration along a magnetic field. Phys. Plasmas 7, 1–4 (2000)ADSCrossRefGoogle Scholar
  13. Khazanov, G.V., Krivorutsky, E.N., Liemohn, M.W.: Nonlinear drift-kinetic equation in the presence of a circularly polarized wave. Planet. Space Sci. 52, 945–951 (2004)ADSCrossRefGoogle Scholar
  14. Lee, N.C.: Ponderomotive force in a moving warm two-fluid plasma. Phys. Plasmas 7, 497–513 (2000)ADSCrossRefGoogle Scholar
  15. Lee, N.C., Parks, G.K.: Ponderomotive force in a warm two-fluid plasma. Phys. Fluids 26, 724–729 (1983)ADSzbMATHCrossRefGoogle Scholar
  16. Morozov, A.I., Solov’ev, L.S.: Motion of charged particles in electromagnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 201–297. Consultants Bureau, New York (1966)Google Scholar
  17. Sazhin, S.S., Walker, S.N., Woolliscroft, L.J.C.: Observations and theory of whistler-mode waves in the vicinity of the earth’s magnetopause. Adv. Space Res. 11, 33–36 (1991)ADSCrossRefGoogle Scholar
  18. Shukla, P.K., Stenflo, L., Bingham, R., Dendy, R.O.: Ponderomotive force acceleration of ions in the auroral region. J. Geophys. Res. 101, 27449–27451 (1996)ADSCrossRefGoogle Scholar
  19. Similon, P.L., Kaufman, A.N., Holm, D.D.: Oscillation center theory and ponderomotive stabilization of low-frequency plasma modes. Phys. Fluids 29, 1908–1922 (1986)ADSzbMATHCrossRefGoogle Scholar
  20. Stix, T.H.: Waves in Plasmas. American Institute of Physics, College Park, MD (1992)Google Scholar
  21. Yukhimuk, V., Roussel-Dupre, R.: Magnetic field pulses produced via whistler mode wave decay in the ionosphere. Phys. Plasmas 4, 4388–4393 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Goddard Space Flight Center (GSFC) Heliophysics Science Div. (HSD)NASAGreenbeltUSA

Personalised recommendations