Advertisement

Kinetic Theory of Ring Current and Electromagnetic Ion Cyclotron Waves: Applications

  • George V. KhazanovEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 372)

Abstract

Feedback from the RC and EMIC waves to the ionosphere–magnetosphere coupled system is tremendous. The RC energy source is very important to the energetics of the thermal plasma environment in the subauroral, the mid-latitude and even the equatorial ionosphere. The energy stored in this region is comparable to that stored in the particle reservoir in the plasma sheet. The slow release (timescales of hours to days) of this energy via charge-exchange, Coulomb drag, and wave–particle interaction processes produces very different effects on the ionospheric thermal plasma background than the dramatic rapid releases of energy from the magnetotail into the auroral regions. Space observation shows that EMIC wave-induced pitch-angle diffusion of megaelectron volt electrons can operate in the strong diffusion limit with a timescale of several hours to a day. This scattering mechanism is now considered to be one of the most important means of relativistic electron loss during the initial and main phases of a magnetic storm. It essentially couples the research of the outer radiation belt with studies of the RC, EMIC waves, and plasmasphere systems.

Keywords

Wave Packet EMIC Wave Coulomb Collision Loss Cone Oblique Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., Sitenko, A.G., Stepanov, K.N.: Plasma Electrodynamics, vols. 1 and 2. Elsevier, New York (1975)Google Scholar
  2. Albert, J.M.: Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J. Geophys. Res. 108, 1249 (2003). doi: 10.1029/2002JA009792CrossRefGoogle Scholar
  3. Anderson, P.C., Heelis, R.A., Hanson, W.B.: Ionospheric signatures of rapid subauroral ion drifts. J. Geophys. Res. 96, 5785–5792 (1991)ADSCrossRefGoogle Scholar
  4. Anderson, B.J., Erlandson, R.E., Zanetti, L.J.: A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere. 1. Equatorial occurrence distributions. J. Geophys. Res. 97, 3075–3088 (1992a)ADSCrossRefGoogle Scholar
  5. Anderson, B.J., Erlandson, R.E., Zanetti, L.J.: A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere. 2. Wave properties. J. Geophys. Res. 97, 3089–3101 (1992b)ADSCrossRefGoogle Scholar
  6. Anderson, P.C., Hanson, W.R., Heelis, E.A., Craven, J.D., Baker, D.N., Frank, L.A.: A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J. Geophys. Res. 98, 6069–6078 (1993)ADSCrossRefGoogle Scholar
  7. Anderson, B.J., Denton, R.E., Fuselier, S.A.: On determining polarization characteristics of ion cyclotron wave magnetic field fluctuations. J. Geophys. Res. 101, 13195–13213 (1996)ADSCrossRefGoogle Scholar
  8. Arnoldy, R.L.: Transverse ion acceleration by active experiments. In: Lysak, R.L. (ed.) Auroral Plasma Dynamics. Geophys. Monogr. Ser., vol. 80, pp. 195–202. AGU, Washington, DC (1993)CrossRefGoogle Scholar
  9. Bale, S.D., Kellogg, P.J., Erickson, K.N., Monson, S.J., Arnoldy, R.L.: Ponderomotive lower hybrid wave growth in electric fields associated with electron beam injection and transverse ion acceleration. Adv. Space Res. 21, 735–738 (1998)ADSCrossRefGoogle Scholar
  10. Bingham, R., Bryant, D.A., Hall, D.S.: A wave model for the aurora. Geophys. Res. Lett. 11, 327–330 (1984)ADSCrossRefGoogle Scholar
  11. Boyle, C.B., Reiff, P.H., Hairston, M.R.: Empirical polar cap potentials. J. Geophys. Res. 102, 111–125 (1997)ADSCrossRefGoogle Scholar
  12. Burke, W.J., Fehringer, T.L., Weimer, D.R., Huang, C.Y., Gussenhoven, M.S., Rich, F.J., Gentile, L.C.: Observed and predicted potential distributions during the October 1995 magnetic cloud passage. Geophys. Res. Lett. 25, 3023–3026 (1998)ADSCrossRefGoogle Scholar
  13. Chang, T., Coppi, B.: Lower hybrid acceleration and ion evolution in the subauroral region. Geophys. Res. Lett. 8, 1253–1256 (1981)ADSCrossRefGoogle Scholar
  14. Cornwall, J.M., Coroniti, F.V., Thorne, R.M.: Turbulent loss of ring current protons. J. Geophys. Res. 75, 4699–4709 (1970)ADSCrossRefGoogle Scholar
  15. Cornwall, J.M., Coroniti, F.V., Thorne, R.M.: Unified theory of SAR-arc formation at the plasmapause. J. Geophys. Res. 76, 4428–4445 (1971)ADSCrossRefGoogle Scholar
  16. Davidson, R.C., Gladd, N.T., Wu, C.S., Huba, J.D.: Effects of finite plasma beta on the lower-hybrid-drift instability. Phys. Fluids 20, 301–312 (1977)ADSCrossRefGoogle Scholar
  17. Denton, R.E., Anderson, B.J., Ho, G., Hamilton, D.C.: Effects of wave superposition on the polarization of electromagnetic ion cyclotron waves. J. Geophys. Res. 101, 24869–24885 (1996)ADSCrossRefGoogle Scholar
  18. Erlandson, R.E., Zanetti, L.J., Potemra, T.A., Block, L.P., Holmgren, G.: Viking magnetic and electric field observations of Pc 1 waves at high latitudes. J. Geophys. Res. 95, 5941–5955 (1990)ADSCrossRefGoogle Scholar
  19. Foat, J.E., Lin, R.P., Smith, D.M., Fenrich, F., Millan, R., Roth, I., Lorentzen, K.R., McCarthy, M.P., Parks, G.K., Treilhou, J.P.: First detection of a terrestrial MeV X-ray burst. Geophys. Res. Lett. 25, 4109–4112 (1998)ADSCrossRefGoogle Scholar
  20. Foster, J.C., Burke, W.J.: SAPS: A new categorization for subauroral electric fields. Eos Trans. AGU 83(36), 393–394 (2002)ADSCrossRefGoogle Scholar
  21. Foster, J.C., Vo, H.B.: Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. 107, 1475 (2002). doi: 10.1029/2002JA009409CrossRefGoogle Scholar
  22. Fraser, B.J., Samson, J.C., Hu, Y.D., McPherron, R.L., Russell, C.T.: Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2. J. Geophys. Res. 97, 3063–3074 (1992)ADSCrossRefGoogle Scholar
  23. Fraser, B.J., Singer, H.J., Adrian, M.L., Gallagher, D.L., Thomsen, M.F.: The relationship between plasma density structure and EMIC waves at geosynchronous orbit. In: Burch, J.L., Schulz, M., Spence, H.E. (eds.) Inner Magnetosphere Interactions: New Perspectives from Imaging. Geophys. Monogr. Ser., vol. 159, pp. 55–68. AGU, Washington, DC (2005)CrossRefGoogle Scholar
  24. Gamayunov, K.V., Krivorutsky, E.N., Veryaev, A.A., Khazanov, G.V.: Parametric excitation of longitudinal oscillations by the lower frequency pumping wave. Plasma Phys. Control. Fusion 34, 1359–1367 (1992)ADSCrossRefGoogle Scholar
  25. Gamayunov, K.V., Khazanov, G.V., Liemohn, M.W., Fok, M-C, Ridley, A.J.: Self consistent model of magnetospheric electric field, ring current, plasmasphere, and electromagnetic ion cyclotron waves: Initial results. J. Geophys. Res. 114, A03221 (2009). doi: 10.1029/2008JA013597ADSCrossRefGoogle Scholar
  26. Ganguli, S.B., Palmadesso, P.J.: Plasma transport in the auroral return current region. J. Geophys. Res. 92, 8673–8690 (1987)ADSCrossRefGoogle Scholar
  27. Garner, T.W., Wolf, R.A., Spiro, R.W., Burke, W.J., Fejer, B.G., Sazykin, S., Roeder, J.L., Hairston, M.R.: Magnetospheric electric fields and plasma sheet injection to low L shells during the 4–5 June 1991 magnetic storm: Comparison between the rice convection model and observations. J. Geophys. Res. 109, A02214 (2004). doi: 10.1029/2003JA010208ADSCrossRefGoogle Scholar
  28. Glauert, S.A., Horne, R.B.: Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. 110, A04206 (2005). doi: 10.1029/2004JA010851ADSCrossRefGoogle Scholar
  29. Goldstein, J., Burch, J.L., Sandel, B.R., Mende, S.B., son Brandt, P.C., Hairston, M.R.: Coupled response of the inner magnetosphere and ionosphere on 17 April 2002. J. Geophys. Res. 110, A03205 (2005). doi: 10.1029/2004JA010712ADSCrossRefGoogle Scholar
  30. Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C., Smith, E.J., Tang, F., Akasofu, S.-I.: Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979). J. Geophys. Res. 94, 8835–8851 (1989)ADSCrossRefGoogle Scholar
  31. Green, J.C., Onsager, T.G., O'Brien, T.P., Baker, D.N.: Testing loss mechanisms capable of rapidly depleting relativistic electron flux in the Earth's outer radiation belt. J. Geophys. Res. 109, A12211 (2004). doi: 10.1029/2004JA010579ADSCrossRefGoogle Scholar
  32. Gurgiolo, C., Sandel, B.R., Perez, J.D., Mitchell, D.G., Pollock, C.J., Larsen, B.A.: Overlap of the plasmasphere and ring current: Relation to subauroral ionospheric heating. J. Geophys. Res. 110, A12217 (2005). doi: 10.1029/2004JA010986ADSCrossRefGoogle Scholar
  33. Gurnett, D.A., Huff, R.L., Menietti, J.D., Burch, J.L., Winningham, J.D., Shawhan, S.D.: Correlated low-frequency electric and magnetic noise along the auroral field lines. J. Geophys. Res. 89, 8971–8985 (1984)ADSCrossRefGoogle Scholar
  34. Hardy, D.A., Gussenhoven, M.S., Raistrick, R., McNeil, W.J.: Statistical and functional representation of the pattern of auroral energy flux, number flux, and conductivity. J. Geophys. Res. 92, 12275–12294 (1987)ADSCrossRefGoogle Scholar
  35. Horne, R.B., Thorne, R.M.: On the preferred source location for the convective amplification of ion cyclotron waves. J. Geophys. Res. 98, 9233–9247 (1993)ADSCrossRefGoogle Scholar
  36. Jaggi, R.K., Wolf, R.A.: Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 78, 2852–2866 (1973)ADSCrossRefGoogle Scholar
  37. Jordanova, V.K., Farrugia, C.J., Thorne, R.M., Khazanov, G.V., Reeves, G.D., Thomsen, M.F.: Modeling ring current proton precipitation by EMIC waves during the May 14–16, 1997, storm. J. Geophys. Res. 106, 7–22 (2001)ADSCrossRefGoogle Scholar
  38. Khazanov, G.V., Gamayunov, K.V.: Effect of electromagnetic ion cyclotron wave normal angle distribution on relativistic electron scattering in outer radiation belt. J. Geophys. Res. 112, A10209 (2007a). doi: 10.1029/2007JA012282ADSCrossRefGoogle Scholar
  39. Khazanov, G.V., Gamayunov, K.V.: Effect of oblique electromagnetic ion cyclotron waves on relativistic electron scattering: Combined release and radiation effects satellite (CRRES)-based calculation. J. Geophys. Res. 112, A07220 (2007b). doi: 10.1029/2007JA012300ADSCrossRefGoogle Scholar
  40. Khazanov, G.V., Moore, T.E., Krivorutsky, E.N., Horwitz, J.L., Liemohn, M.W.: Lower hybrid turbulence and ponderomotive force effects in space plasmas subjected for large-amplitude low-frequency waves. Geophys. Res. Lett. 23, 797–800 (1996)ADSCrossRefGoogle Scholar
  41. Khazanov, G.V., Krivorutsky, E.N., Moore, T.E., Liemohn, M.W., Horwitz, J.L.: Lower hybrid oscillations in multicomponent space plasmas subjected to ion cyclotron waves. J. Geophys. Res. 102, 175–184 (1997a)ADSCrossRefGoogle Scholar
  42. Khazanov, G.V., Krivorutsky, E.N., Liemohn, M.W., Horwitz, J.L.: A model of lower hybrid wave excitation compared with observations by Viking. Geophys. Res. Lett. 24, 2399–2402 (1997b)ADSCrossRefGoogle Scholar
  43. Khazanov, G.V., Gamayunov, K.V., Liemohn, M.W.: Alfvén waves as a source of lower-hybrid activity in the ring current region. J. Geophys. Res. 105, 5403–5409 (2000)ADSCrossRefGoogle Scholar
  44. Khazanov, G.V., Gamayunov, K.V., Jordanova, V.K., Krivorutsky, E.N.: A self-consistent model of the interacting ring current ions and electromagnetic ion cyclotron waves, initial results: Waves and precipitating fluxes. J. Geophys. Res. 107, 1085 (2002). doi: 10.1029/2001JA000180CrossRefGoogle Scholar
  45. Khazanov, G.V., Gamayunov, K.V., Jordanova, V.K.: Self-consistent model of magnetospheric ring current ions and electromagnetic ion cyclotron waves: The 2–7 May 1998 storm. J. Geophys. Res. 108, 1419 (2003a). doi: 10.1029/2003JA009856CrossRefGoogle Scholar
  46. Khazanov, G.V., Liemohn, M.W., Newman, T.S., Fok, M.-C., Spiro, R.W.: Self-consistent magnetosphere–ionosphere coupling: Theoretical studies. J. Geophys. Res. 108, 1122 (2003b). doi: 10.1029/2002JA009624CrossRefGoogle Scholar
  47. Khazanov, G.V., Gamayunov, K.V., Gallagher, D.L., Kozyra, J.U.: Self-consistent model of magnetospheric ring current and propagating electromagnetic ion cyclotron waves: Waves in multi-ion magnetosphere. J. Geophys. Res. 111, A10202 (2006). doi: 10.1029/2006JA011833ADSCrossRefGoogle Scholar
  48. Khazanov, G.V., Gamayunov, K.V., Gallagher, D.L., Kozyra, J.U., Liemohn, M.W.: Self-consistent model of magnetospheric ring current and propagating electromagnetic ion cyclotron waves. 2. Wave induced ring current precipitation and thermal electron heating. J. Geophys. Res. 112, A04209 (2007). doi: 10.1029/2006JA012033ADSCrossRefGoogle Scholar
  49. Kim, H.-J., Chan, A.A.: Fully adiabatic changes in storm time relativistic electron fluxes. J. Geophys. Res. 102, 22107–22116 (1997)ADSCrossRefGoogle Scholar
  50. Kozyra, J.U., Shelley, E.G., Comfort, R.H., Brace, L.H., Cravens, T.E., Nagy, A.F.: The role of ring current O+ in the formation of stable auroral red arcs. J. Geophys. Res. 92, 7487–7502 (1987)ADSCrossRefGoogle Scholar
  51. Kozyra, J.U., Jordanova, V.K., Horne, R.B., Thorne, R.M.: Modeling of the contribution of electromagnetic ion cyclotron (EMIC) waves to stormtime ring current erosion. In: Tsurutani, B.T., Gonzalez, W.D., Kamide, E.Y., Arballo, J.K. (eds.) Magnetic Storms. Geophys. Monogr. Ser., vol. 98, pp. 187–202. AGU, Washington, DC (1997a)CrossRefGoogle Scholar
  52. Kozyra, J.U., Nagy, A.F., Slater, D.W.: High-altitude energy source(s) for stable auroral red arcs. Rev. Geophys. 35, 155–190 (1997b)ADSCrossRefGoogle Scholar
  53. LaBelle, J., Treumann, R.A., Baumjohann, W., Haerendel, G., Sckopke, N., Paschmann, G., Lühr, H.: The duskside plasmapause/ring current interface: Convection and plasma wave observations. J. Geophys. Res. 93, 2573–2590 (1988)ADSCrossRefGoogle Scholar
  54. Li, X., Baker, D.N., Temerin, M., Cayton, T.E., Reeves, E.G.D., Christensen, R.A., Blake, J.B., Looper, M.D., Nakamura, R., Kanekal, S.G.: Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm. J. Geophys. Res. 102, 14123–14140 (1997)ADSCrossRefGoogle Scholar
  55. Lorentzen, K.R., McCarthy, M.P., Parks, G.K., Foat, J.E., Millan, R.M., Smith, D.M., Lin, R.P., Treilhou, J.P.: Precipitation of relativistic electrons by interaction with electromagnetic ion cyclotron waves. J. Geophys. Res. 105, 5381–5389 (2000)ADSCrossRefGoogle Scholar
  56. Loto'aniu, T.M., Thorne, R.M., Fraser, B.J., Summers, D.: Estimating relativistic electron pitch angle scattering rate using properties of the electromagnetic ion cyclotron wave spectrum. J. Geophys. Res. 111, A04220 (2006). doi: 10.1029/2005JA011452ADSCrossRefGoogle Scholar
  57. Lyons, L.R., Thorne, R.M.: Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves. J. Geophys. Res. 77, 5608–5616 (1972)ADSCrossRefGoogle Scholar
  58. McFadden, J.P., Carlson, C.W., Ergun, R.E., Chaston, C.C., Mozer, F.S., Temerin, M., Klumpar, D.M., Shelley, E.G., Peterson, W.K., Möbius, E., Kistler, L., Elphic, R., Strangeway, R., Cattell, C., Pfaff, R.: Electron modulation and ion cyclotron waves observed by FAST. Geophys. Res. Lett. 25, 2045–2048 (1998)ADSCrossRefGoogle Scholar
  59. Meredith, N.P., Thorne, R.M., Horne, R.B., Summers, D., Fraser, B.J., Anderson, R.R.: Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108, 1250 (2003). doi: 10.1029/2002JA009700CrossRefGoogle Scholar
  60. Millan, R.M., Lin, R.P., Smith, D.M., Lorentzen, K.R., McCarthy, M.P.: X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys. Res. Lett. 29, 2194 (2002). doi: 10.1029/2002GL015922ADSCrossRefGoogle Scholar
  61. Mishin, E.V., Burke, W.J.: Stormtime coupling of the ring current, plasmasphere and topside ionosphere: Electromagnetic and plasma disturbances. J. Geophys. Res. 110, A07209 (2005). doi: 10.1029/2005JA011021ADSCrossRefGoogle Scholar
  62. Musher, S.L., Rubenchik, A.M., Sturman, B.I.: Collective effects associated with low hybrid heating of plasma. Fiz. Plazmy (in Russian) 20, 1131–1139 (1978)Google Scholar
  63. Nishimura, Y., Shinbori, A., Ono, T., Iizima, M., Kumamoto, A.: Evolution of ring current and radiation belt particles under the influence of storm-time electric field. J. Geophys. Res. 112, A06241 (2007). doi: 10.1029/2006JA012177ADSCrossRefGoogle Scholar
  64. Olsen, R.C., Shawhan, S.D., Gallagher, D.L., Green, J.L., Chappell, C.R., Anderson, R.R.: Plasma observations at the Earth's magnetic equator. J. Geophys. Res. 92, 2385–2407 (1987)ADSCrossRefGoogle Scholar
  65. Omelchenko, Yu.A., Shapiro, V.D., Shevchenko, V.I., Ashour-Abdalla, M., Schriver, D.: Modified lower hybrid fan instability excited by precipitating auroral electrons. J. Geophys. Res. 99, 5965–5976 (1994)ADSCrossRefGoogle Scholar
  66. Pottelette, R., Malingre, M., Dubouloz, N., Aparicio, B., Lundin, R., Holmgeen, G., Marklund, G.: High-frequency waves in the Cusp/Cleft regions. J. Geophys. Res. 95, 5957–5971 (1990)ADSCrossRefGoogle Scholar
  67. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., O'Brien, T.P.: Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, 1529 (2003). doi: 10.1029/2002GL016513ADSCrossRefGoogle Scholar
  68. Richmond, A.D., Kamide, Y.: Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique. J. Geophys. Res. 93, 5741–5759 (1988)ADSCrossRefGoogle Scholar
  69. Ridley, A.J., Liemohn, M.W.: A model-derived storm time asymmetric ring current driven electric field description. J. Geophys. Res. 107, 1151 (2002). doi: 10.1029/2001JA000051CrossRefGoogle Scholar
  70. Shinbori, A., Ono, T., Iizima, M., Kumamoto, A.: SC related electric and magnetic field phenomena observed by the Akebono satellite inside the plasmasphere. Earth Planets Space 56, 269–282 (2004)ADSGoogle Scholar
  71. Shprits, Y.Y., Li, W., Thorne, R.M.: Controlling effect of the pitch angle scattering rates near edge of the loss cone on electron lifetimes. J. Geophys. Res. 111, A12206 (2006). doi: 10.1029/2006JA011758ADSCrossRefGoogle Scholar
  72. Singh, N., Khazanov, G.V.: Numerical simulation of waves driven by plasma currents generated by low-frequency Alfven waves in a multi-ion plasma. J. Geophys. Res. 109, A05210 (2004). doi: 10.1029/2003JA010251ADSCrossRefGoogle Scholar
  73. Singh, N., Khazanov, G., Mukhter, A.: Electrostatic wave generation and transverse ion acceleration by Alfvenic wave components of BBELF turbulence. J. Geophys. Res. 112, A06210 (2007). doi: 10.1029/2006JA011933ADSCrossRefGoogle Scholar
  74. Sonnerup, B.U.O.: Theory of the low latitude boundary layer. J. Geophys. Res. 85, 2017–2026 (1980)ADSCrossRefGoogle Scholar
  75. Southwood, D.J., Wolf, R.A.: An assessment of the role of precipitation in magnetospheric convection. J. Geophys. Res. 83, 5227–5232 (1978)ADSCrossRefGoogle Scholar
  76. Spasojević, M., Goldstein, J., Carpenter, D.L., Inan, U.S., Sandel, B.R., Moldwin, M.B., Reinisch, B.W.: Global response of the plasmasphere to a geomagnetic disturbance. J. Geophys. Res. 108, 1340 (2003). doi: 10.1029/2003JA009987CrossRefGoogle Scholar
  77. Summers, D., Thorne, R.M.: Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108, 1143 (2003). doi: 10.1029/2002JA009489CrossRefGoogle Scholar
  78. Summers, D., Ma, C., Mukai, T.: Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms. J. Geophys. Res. 109, A04221 (2004). doi: 10.1029/2004JA010437ADSCrossRefGoogle Scholar
  79. Summers, D., Ni, B., Meredith, N.P.: Timescales for radiation belt electron acceleration and loss due to resonant wave–particle interactions. 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res. 112, A04207 (2007). doi: 10.1029/2006JA011993ADSCrossRefGoogle Scholar
  80. Thorne, R.M., Horne, R.B.: The contribution of ion-cyclotron waves to electron heating and SAR-arcs excitation near the storm-time plasmapause. Geophys. Res. Lett. 19, 417–420 (1992)ADSCrossRefGoogle Scholar
  81. Thorne, R.M., Kennel, C.F.: Relativistic electron precipitation during magnetic storm main phase. J. Geophys. Res. 76, 4446–4453 (1971)ADSCrossRefGoogle Scholar
  82. Thorne, R.M., Horne, R.B., Glauert, S.A., Meredith, N.P., Shprits, Y.Y., Summers, D., Anderson, R.R.: The influence of wave–particle interactions on relativistic electron dynamics during storms. In: Burch, J., Schulz, M., Spence, M. (eds.) Inner Magnetosphere Interactions: New Perspectives from Imaging. Geophys. Monogr. Ser., vol. 159, pp. 101–112. AGU, Washington, DC (2005)CrossRefGoogle Scholar
  83. Tsytovich, V.N.: Nonlinear Effects in Plasma. Plenum, New York (1970)CrossRefGoogle Scholar
  84. Vasyliunas, V.M.: Mathematical models of magnetospheric convection and its coupling to the ionosphere. In: McCormac, B. (ed.) Particles and Fields in the Magnetosphere, pp. 60–71. D. Reidel, Norwell, MA (1970)CrossRefGoogle Scholar
  85. Vasyliunas, V.M.: The interrelationship of magnetospheric processes. In: McCormac, B.M. (ed.) Earth's Magnetospheric Processes, pp. 29–38. D. Reidel, Hingham, MA (1972)CrossRefGoogle Scholar
  86. Weimer, D.R.: A flexible, IMF dependent model of high-latitude electric potentials having “space weather” applications. Geophys. Res. Lett. 23, 2549–2552 (1996)ADSCrossRefGoogle Scholar
  87. Weimer, D.R.: An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res. 106, 407–416 (2001)ADSCrossRefGoogle Scholar
  88. Wygant, J., Rowland, D., Singer, H.J., Temerin, M., Mozer, F., Hudson, M.K.: Experimental evidence on the role of the large spatial scale electric field in creating the ring current. J. Geophys. Res. 103, 29527–29544 (1998)ADSCrossRefGoogle Scholar
  89. Young, D.T., Balsiger, H., Geiss, J.: Correlations of magnetospheric ion composition with geomagnetic and solar activity. J. Geophys. Res. 87, 9077–9096 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Goddard Space Flight Center (GSFC) Heliophysics Science Div. (HSD)NASAGreenbeltUSA

Personalised recommendations