Preventing Childhood Malaria: Strategies That Work Today and Directions for the Future

  • Kim C. Williamson
Part of the The Loyola University Symposium on the Human Rights of Children book series (LUSY, volume 1)


Malaria, an ancient plague named “Mal Air” by the Italians for its association with swampy areas, remains the most lethal single agent for children under the age of 5: it is responsible for 8% of all deaths in this population. One million children die each year, which is equivalent to one death every 30 s approximately the same number of people that die from HIV each year. Public awareness and funding for treatment and control has trailed significantly. One of the reasons for this is that 90% of the deaths are confined to children (Johansson, Newby, Renshaw, & Wardlaw, 2007). In ­addition, they live in sub-Saharan African, and so they are largely invisible to the industrialized world. However, malaria can be transmitted throughout the tropics and in temperate zones, including the USA and Europe, and it is as lethal to nonimmune adults as it is to young children. As with all infectious diseases drug-resistant strains have developed posing increased risk to travelers and residents. A number of ­economists also suggest that endemic diseases such as malaria are one of the ­primary obstacles to economic development (Teklehaimanot, McCord, & Sachs, 2007). In the case of malaria, 40% of the world’s population is affected.


Antimalarial Drug Severe Malaria Indoor Residual Spray Subunit Vaccine Malaria Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Kim C. Williamson received financial support from Public Health Service grants AI40592 and AI48826 from the National Institute of Allergy and Infectious Disease.


  1. Alonso, P. L., Sacarlal, J., Aponte, J. J., et al. (2004). Efficacy of the rts, s/as02a vaccine against Plasmodium falciparum infection and disease in young African children: Randomised controlled trial. Lancet, 364, 1411–1420.PubMedCrossRefGoogle Scholar
  2. Alonso, P. L., Sacarlal, J., Aponte, J. J., et al. (2005). Duration of protection with rts, s/as02a malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: Single-blind extended follow-up of a randomised controlled trial. Lancet, 366, 2012–2018.PubMedCrossRefGoogle Scholar
  3. Aponte, J. J., Aide, P., Renom, M., et al. (2007). Safety of the rts, s/as02d candidate malaria vaccine in infants living in a highly endemic area of Mozambique: A double blind randomised controlled phase I/IIb trial. Lancet, 370, 1543–1551.PubMedCrossRefGoogle Scholar
  4. Bojang, K. A., Milligan, P. J., Pinder, M., et al. (2001). Efficacy of RTS, S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in the Gambia: A randomised trial. Lancet, 358, 1927–1934.PubMedCrossRefGoogle Scholar
  5. Bouharoun-Tayoun, H., Attanath, P., Sabchareon, A., Chongsuphajaisiddhi, T., & Druilhe, P. (1990). Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. The Journal of Experimental Medicine, 172, 1633–1641.PubMedCrossRefGoogle Scholar
  6. Bozdech, Z., Llinas, M., Pulliam, B. L., Wong, E. D., Zhu, J., & DeRisi, J. L. (2003). The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biology, 1, E5.PubMedCrossRefGoogle Scholar
  7. Blanford, S., Chan, B. H., Jenkins, N., et al. (2005). Fungal pathogen reduces potential for malaria transmission. Science, 308, 1638–1641.PubMedCrossRefGoogle Scholar
  8. Breman, J. G., & Holloway, C. N. (2007). Malaria surveillance counts. The American Journal of Tropical Medicine and Hygiene, 77, 36–47.PubMedGoogle Scholar
  9. Bryce, J., Boschi-Pinto, C., Shibuya, K., & Black, R. E. (2005). Group WHOCHER. Who estimates of the causes of death in children. Lancet, 1, 885–888.Google Scholar
  10. Cai, X. Z. (1981). Observation of therapeutic effect of single-dose combined administration of qinghaosu, sulphomethoxine, pyrimethamine and primaquine in the treatment of chloroquine-resistant malignant malaria (author’s transl). Chung Hua Nei Ko Tsa Chih, 20, 724–727.PubMedGoogle Scholar
  11. Catteruccia, F. (2007). Malaria vector control in the third millennium: Progress and perspectives of molecular approaches. Pest Management Science, 63, 634–640.PubMedCrossRefGoogle Scholar
  12. Clyde, D. F. (1975). Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. The American Journal of Tropical Medicine and Hygiene, 24, 397–401.PubMedGoogle Scholar
  13. Clyde, D. F., McCarthy, V. C., Miller, R. M., & Hornick, R. B. (1973). Specificity of protection of man immunized against sporozoite-induced falciparum malaria. The American Journal of the Medical Sciences, 266, 398–403.PubMedCrossRefGoogle Scholar
  14. Clyde, D. F., Most, H., McCarthy, V. C., & Vanderberg, J. P. (1973). Immunization of man against sporozoite-induced falciparum malaria. The American Journal of the Medical Sciences, 266, 398–403.PubMedCrossRefGoogle Scholar
  15. Cohen, S., Mc, G. I., & Carrington, S. (1961). Gamma-globulin and acquired immunity to human malaria. Nature, 192, 733–737.PubMedCrossRefGoogle Scholar
  16. D’Alessandro, U., Olaleye, B. O., McGuire, W., et al. (1995). Mortality and morbidity from malaria in Gambian children after introduction of an impregnated bednet programme. Lancet, 345, 479–483.PubMedCrossRefGoogle Scholar
  17. Fidock, D. A., Nomura, T., Talley, A. K., et al. (2000). Mutations in the P. falciparum digestive vacuole transmembrane protein pfcrt and evidence for their role in chloroquine resistance. Molecular Cell, 6, 861–871.PubMedCrossRefGoogle Scholar
  18. Gardner, M. J., Hall, N., Fung, E., et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419, 498–511.PubMedCrossRefGoogle Scholar
  19. Girard, M. P., Reed, Z. H., Friede, M., & Kieny, M. P. (2007). A review of human vaccine research and development: Malaria. Vaccine, 13, 1263–1276.Google Scholar
  20. Goodman, C., Brieger, W., Unwin, A., Mills, A., Meek, S., & Greer, G. (2007). Medicine sellers and malaria treatment in sub-Saharan Africa: What do they do and how can their practice be improved? The American Journal of Tropical Medicine and Hygiene, 77, 203–218.PubMedGoogle Scholar
  21. Goodman, C. D., Su, V., & McFadden, G. I. (2007). The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Molecular and Biochemical Parasitology, 152, 181–191.PubMedCrossRefGoogle Scholar
  22. Gu, H. M., Liu, M. Z., Lu, B. F., et al. (1981). Antimalarial effect and toxicity of methyl-dihydro-artemisinine in animals (author’s transl). Chung Kuo Yao Li Hsueh Pao, 2, 138–144.PubMedGoogle Scholar
  23. Hoffman, S. L., Franke, E. D., Hollingdale, M. R., & Druilhe, P. (1996). Attacking the infected hepatocyte. In S. L. Hoffman (Ed.), Malaria vaccine development: A multi-immune response approach (pp. 35–75). Washington, D.C.: American Society for Microbiology.Google Scholar
  24. Hoffman, S. L., Goh, L. M., Luke, T. C., et al. (2002). Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. The Journal of Infectious Diseases, 185, 1155–1164.PubMedCrossRefGoogle Scholar
  25. Hoffman, S. L., & Miller, L. H. (1996). Perspectives on malaria vaccine development. ASM Press. Washington, D.C.Google Scholar
  26. Holt, R. A., Subramanian, G. M., Halpern, A., et al. (2002). The genome sequence of the malaria mosquito anopheles Gambia. Science, 298, 129–149.PubMedCrossRefGoogle Scholar
  27. Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A., & Jacobs-Lorena, M. (2002). Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature, 417, 452–455.PubMedCrossRefGoogle Scholar
  28. Jiang, J. B., Li, G. Q., Guo, X. B., Kong, Y. C., & Arnold, K. (1982). Antimalarial activity of mefloquine and qinghaosu. Lancet, 1, 885–888.Google Scholar
  29. Johansson, E.W., Newby, H., Renshaw, M., & Wardlaw, T. (2007). Malaria & children. United Nations Children’s Fund.Google Scholar
  30. Knight, J. C. (2005). Regulatory polymorphisms underlying complex disease traits. Journal of Molecular Medicine, 83, 97–109.PubMedCrossRefGoogle Scholar
  31. Knols, B. G., Bossin, H. C., Mukabana, W. R., & Robinson, A. S. (2007). Transgenic mosquitoes and the fight against malaria: Managing technology push in a turbulent GMO world. The American Journal of Tropical Medicine and Hygiene, 77, 232–242.PubMedGoogle Scholar
  32. Labaied, M., Harupa, A., Dumpit, R. F., Coppens, I., Mikolajczak, S. A., & Kappe, S. H. (2007). Plasmodium yoelii sporozoites with simultaneous deletion of p52 and p36 are completely attenuated and confer sterile immunity against infection. Infection and Immunity, 75, 3758–3768.PubMedCrossRefGoogle Scholar
  33. Lacey, L. A. (2007). Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Journal of the American Mosquito Control Association, 23(2 Suppl), 133–163.PubMedCrossRefGoogle Scholar
  34. Lengeler, C. (2004). Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database System Review (2):CD000363.Google Scholar
  35. Le Roch, K. G., Johnson, J. R., Florens, L., et al. (2004). Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Research, 14, 2308–2318.PubMedCrossRefGoogle Scholar
  36. Linares, G. E., & Rodriguez, J. B. (2007). Current status and progresses made in malaria chemotherapy. Current Medicinal Chemistry, 14, 289–314.PubMedCrossRefGoogle Scholar
  37. Macete, E., Aponte, J. J., Guinovart, C., et al. (2007). Safety and immunogenicity of the RTS, S/AS02 candidate malaria vaccine in children aged 1–4 in Mozambique. Tropical Medicine and International Health, 12, 37–46.PubMedGoogle Scholar
  38. Moorthy, V., Reed, Z., & Smith, P. G. (2007). Efficacy WHOSGoMoMV. Measurement of malaria vaccine efficacy in phase III trials: Report of a WHO consultation. Vaccine, 13, 1263–1276.Google Scholar
  39. Mueller, A. K., Labaied, M., Kappe, S. H., & Matuschewski, K. (2005). Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature, 433, 164–167.PubMedCrossRefGoogle Scholar
  40. Mulligan, H. W., Russell, P. F., & Mohan, B. N. (1941). Active immunization of fowls against Plasmodium gallinaceum by infections of killed homologous sporozoites. Journal of Malaria Institute of India, 4, 24–34.Google Scholar
  41. Nosten, F., & White, N. J. (2007). Artemisinin-based combination treatment of falciparum malaria. The American Journal of Tropical Medicine and Hygiene, 77, 181–192.PubMedGoogle Scholar
  42. Nussenzweig, R. S., Vanderberg, J., Most, H., & Orton, C. (1967). Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature, 216, 160–162.PubMedCrossRefGoogle Scholar
  43. Phillips-Howard, P. A., Nahlen, B. L., Kolczak, M. S., et al. (2003). Efficacy of permethrin-treated bed nets in the prevention of mortality in young children in an area of high perennial malaria transmission in western Kenya. The American Journal of Tropical Medicine and Hygiene, 68, 23–29.PubMedGoogle Scholar
  44. Pombo, D. J., Lawrence, G., Hirunpetcharat, C., et al. (2002). Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet, 360, 610–617.PubMedCrossRefGoogle Scholar
  45. Rieckmann, K. H. (1990). Human immunization with attenuated sporozoites. Bulletin of the World Health Organization, 55, 363–365.Google Scholar
  46. Rieckmann, K. H., Carson, P. E., Beaudoin, R. L., Cassells, J. S., & Sell, K. W. (1974). Letter: Sporozoite induced immunity in man against an Ethiopian strain of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 76, 812–818.Google Scholar
  47. Sadasivaiah, S., Tozan, Y., & Breman, J. G. (2007). Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: How can it be used for malaria control? The American Journal of Tropical Medicine and Hygiene, 77, 249–263.PubMedGoogle Scholar
  48. Schofield, L., & Mueller, I. (2006). Clinical immunity to malaria. Current Molecular Medicine, 6, 205–221.PubMedCrossRefGoogle Scholar
  49. Scholte, E. J., Ng’habi, K., Kihonda, J., et al. (2005). An entomopathogenic fungus for control of adult African malaria mosquitoes. Science, 308, 1641–1642.PubMedCrossRefGoogle Scholar
  50. Shulman, C. E., Dorman, E. K., Cutts, F., et al. (1999). Intermittent sulphadoxine-pyrimethamine to prevent severe anaemia secondary to malaria in pregnancy: A randomised placebo-controlled trial. Lancet, 353, 632–636.PubMedCrossRefGoogle Scholar
  51. Smith, J. D., & Craig, A. G. (2005). The surface of the Plasmodium falciparum-infected erythrocyte. Current Issues in Molecular Biology, 7, 81–93.PubMedGoogle Scholar
  52. Snow, R. W., Rowan, K. M., & Greenwood, B. M. (1987). A trial of permethrin-treated bed nets in the prevention of malaria in Gambian children. Transactions of the Royal Society of Tropical Medicine and Hygiene, 76, 812–818.Google Scholar
  53. Snow, R. W., Rowan, K. M., Lindsay, S. W., & Greenwood, B. M. (1988). A trial of bed nets (mosquito nets) as a malaria control strategy in a rural area of the Gambia, West Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 76, 812–818.Google Scholar
  54. Tarun, A. S., Peng, X., Dumpit, R. F., et al. (2008). A combined transcriptome and proteome survey of malaria parasite liver stages. Proceedings of the National Academy of Sciences of the United States of America, 105, 305–310.PubMedCrossRefGoogle Scholar
  55. Taylor, J. G., Ferdig, M. T., Su, X. Z., & Wellems, T. E. (2000). Toward quantitative genetic analysis of host and parasite traits in the manifestations of Plasmodium falciparum malaria. Current Opinion in Genetics & Development, 10, 314–319.CrossRefGoogle Scholar
  56. Teklehaimanot, A., McCord, G. C., & Sachs, J. D. (2007). Scaling up malaria control in Africa: An economic and epidemiological assessment. American Journal of Tropic Medicine and Hygiene, 77, 138–144.Google Scholar
  57. ter Kuile, F. O., Terlouw, D. J., Kariuki, S. K., et al. (2003). Impact of permethrin-treated bed nets on malaria, anemia, and growth in infants in an area of intense perennial malaria transmission in western Kenya. The American Journal of Tropical Medicine and Hygiene, 68, 68–77.PubMedGoogle Scholar
  58. Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.PubMedCrossRefGoogle Scholar
  59. Walther, B., & Walther, M. (2007). What does it take to control malaria? Annals of Tropic Medicine Parasitology, 86, 207–215.Google Scholar
  60. Weisman, J. L., Liou, A. P., Shelat, A. A., Cohen, F. E., Guy, R. K., & DeRisi, J. L. (2006). Searching for new antimalarial therapeutics amongst known drugs. Chemical Biology & Drug Design, 67, 409–416.CrossRefGoogle Scholar
  61. Yeo, T. W., Lampah, D. A., Gitawati, R., et al. (2007). Impaired nitric oxide bioavailability and l-arginine reversible endothelial dysfunction in adults with falciparum malaria. The Journal of Experimental Medicine, 204, 2693–2704.PubMedCrossRefGoogle Scholar
  62. Young, J. A., Fivelman, Q. L., Blair, P. L., et al. (2005). The Plasmodium falciparum sexual development transcriptome: A microarray analysis using ontology-based pattern identification. Molecular and Biochemical Parasitology, 143, 67–79.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiologyLoyola UniversityChicagoUSA

Personalised recommendations