Skip to main content

Knockout Models of Neurofilament Proteins

  • Chapter
  • First Online:
  • 1062 Accesses

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 3))

Abstract

Neurofilaments (NFs) are the most prominent cytoskeleton components of large myelinated axons from adult central and peripheral nervous systems. In the last 15 years, the gene targeting technique has been widely used to investigate the role of NF proteins in neuronal function. Gene knockout studies have demonstrated that NFs are crucial to expand the caliber of myelinated axons and consequently to increase their conduction velocity. However, the mechanism by which NFs determine the axonal diameter is not yet fully elucidated. NFs also contribute to the dynamic properties of the axonal cytoskeleton during neuronal differentiation, axon outgrowth and regeneration. Perturbations of their metabolism and organization are frequently associated with neurodegenerative disorders, including amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, Alzheimer’s disease and giant axonal neuropathy. Here, we describe how mouse knockout models of NF proteins have been used to study the multiple aspects of NF biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aranda-Espinoza H, Carl P, Leterrier JF, Janmey P, Discher DE (2002) Domain unfolding in neurofilament sidearms: effects of phosphorylation and ATP. FEBS Lett 531:397–401

    Article  CAS  PubMed  Google Scholar 

  • Barclay M, Noakes PG, Ryan AF, Julien JP, Housley GD (2007) Neuronal expression of peripherin, a type III intermediate filament protein, in the mouse hindbrain. Histochem Cell Biol 128:541–550

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Robertson J, Julien JP (1999) Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem Cell Biol 77:41–45

    Article  CAS  PubMed  Google Scholar 

  • Brody BA, Ley CA, Parysek LM (1989) Selective distribution of the 57 kDa neural intermediate filament protein in the rat CNS. J Neurosci 9:2391–2401

    CAS  PubMed  Google Scholar 

  • Brown HG, Hoh JH (1997) Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing. Biochemistry 36:15035–15040

    Article  CAS  PubMed  Google Scholar 

  • Chiu FC, Barnes EA, Das K, Haley J, Socolow P, Macaluso FP, Fant J (1989) Characterization of a novel 66 kd subunit of mammalian neurofilaments. Neuron 2:1435–1445

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Lalonde R, Julien JP, Strazielle C (2005a) Mice with the deleted neurofilament of low-molecular-weight (Nefl) gene: 1. Effects on regional brain metabolism. J Neurosci Res 80:741–750

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Strazielle C, Julien JP, Lalonde R (2005b) Mice with the deleted neurofilament of low molecular weight (Nefl) gene: 2. Effects on motor functions and spatial orientation. J Neurosci Res 80:751–758

    Article  CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Bosco P, Kang C, Gourov A, Tu PH, Lee VM, Lazzarini RA (1998a) Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J Cell Biol 141:727–739

    Article  CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Kang C, Bosco P, Gourov A, Tu PH, Zhang B, Lee VM, Lazzarini RA (1998b) Requirement of heavy neurofilament subunit in the development of axons with large calibers. J Cell Biol 143:195–205

    Article  CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Margita A, Lazzarini RA (1999a) Age-related atrophy of motor axons in mice deficient in the mid-sized neurofilament subunit. J Cell Biol 146:181–192

    CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Pereira D, Tu PH, Zhang B, Lee VM, Lazzarini RA (1999b) Mice with disrupted midsized and heavy neurofilament genes lack axonal neurofilaments but have unaltered numbers of axonal microtubules. J Neurosci Res 57:23–32

    Article  CAS  PubMed  Google Scholar 

  • Eriksson KS, Zhang S, Lin L, Lariviere RC, Julien JP, Mignot E (2008) The type III neurofilament peripherin is expressed in the tuberomammillary neurons of the mouse. BMC Neurosci 9:26

    Article  PubMed  Google Scholar 

  • Escurat M, Djabali K, Gumpel M, Gros F, Portier MM (1990) Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat. J Neurosci 10:764–784

    CAS  PubMed  Google Scholar 

  • Eyer J, Peterson A (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12:389–405

    Article  CAS  PubMed  Google Scholar 

  • Ferri GL, Sabani A, Abelli L, Polak JM, Dahl D, Portier MM (1990) Neuronal intermediate filaments in rat dorsal root ganglia: differential distribution of peripherin and neurofilament protein immunoreactivity and effect of capsaicin. Brain Res 515:331–335

    Article  CAS  PubMed  Google Scholar 

  • Fliegner KH, Kaplan MP, Wood TL, Pintar JE, Liem RK (1994) Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J Comp Neurol 342:161–173

    Article  CAS  PubMed  Google Scholar 

  • Fornaro M, Lee JM, Raimondo S, Nicolino S, Geuna S, Giacobini-Robecchi M (2008) Neuronal intermediate filament expression in rat dorsal root ganglia sensory neurons: an in vivo and in vitro study. Neuroscience 153:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Friede RL, Samorajski T (1970) Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec 167:379–387

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    CAS  PubMed  Google Scholar 

  • Garcia ML, Lobsiger CS, Shah SB, Deerinck TJ, Crum J, Young D, Ward CM, Crawford TO, Gotow T, Uchiyama Y, Ellisman MH, Calcutt NA, Cleveland DW (2003) NF-M is an essential target for the myelin-directed “outside-in” signaling cascade that mediates radial axonal growth. J Cell Biol 163:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Garcia ML, Rao MV, Fujimoto J, Garcia VB, Shah SB, Crum J, Gotow T, Uchiyama Y, Ellisman M, Calcutt NA, Cleveland DW (2009) Phosphorylation of highly conserved neurofilament medium KSP repeats is not required for myelin-dependent radial axonal growth. J Neurosci 29:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Geisler N, Kaufmann E, Fischer S, Plessmann U, Weber K (1983) Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J 2:1295–1302

    CAS  PubMed  Google Scholar 

  • Geisler N, Vandekerckhove J, Weber K (1987) Location and sequence characterization of the major phosphorylation sites of the high molecular mass neurofilament proteins M and H. FEBS Lett 221:403–407

    Article  CAS  PubMed  Google Scholar 

  • Glasgow E, Druger RK, Fuchs C, Lane WS, Schechter N (1994) Molecular cloning of gefiltin (ON1): serial expression of two new neurofilament mRNAs during optic nerve regeneration. EMBO J 13:297–305

    CAS  PubMed  Google Scholar 

  • Goldstein ME, Grant P, House SB, Henken DB, Gainer H (1996) Developmental regulation of two distinct neuronal phenotypes in rat dorsal root ganglia. Neuroscience 71:243–258

    Article  CAS  PubMed  Google Scholar 

  • Goldstein ME, Sternberger LA, Sternberger NH (1987) Varying degrees of phosphorylation determine microheterogeneity of the heavy neurofilament polypeptide (Nf-H). J Neuroimmunol 14:135–148

    Article  CAS  PubMed  Google Scholar 

  • Gorham JD, Baker H, Kegler D, Ziff EB (1990) The expression of the neuronal intermediate filament protein peripherin in the rat embryo. Brain Res Dev Brain Res 57:235–248

    Article  CAS  PubMed  Google Scholar 

  • Gotow T, Takeda M, Tanaka T, Hashimoto PH (1992) Macromolecular structure of reassembled neurofilaments as revealed by the quick-freeze deep-etch mica method: difference between NF-M and NF-H subunits in their ability to form cross-bridges. Eur J Cell Biol 58:331–345

    CAS  PubMed  Google Scholar 

  • Hirokawa N, Glicksman MA, Willard MB (1984) Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol 98:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Hisanaga S, Hirokawa N (1988) Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing. J Mol Biol 202:297–305

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PN, Griffin JW, Price DL (1984) Control of axonal caliber by neurofilament transport. J Cell Biol 99:705–714

    Article  CAS  PubMed  Google Scholar 

  • Izmiryan A, Franco CA, Paulin D, Li Z, Xue Z (2009) Synemin isoforms during mouse development: multiplicity of partners in vascular and neuronal systems. Exp Cell Res 315:769–783

    Article  CAS  PubMed  Google Scholar 

  • Jacomy H, Zhu Q, Couillard-Despres S, Beaulieu JM, Julien JP (1999) Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J Neurochem 73:972–984

    Article  CAS  PubMed  Google Scholar 

  • Jones SM, Williams RC Jr (1982) Phosphate content of mammalian neurofilaments. J Biol Chem 257:9902–9905

    CAS  PubMed  Google Scholar 

  • Julien JP, Mushynski WE (1983) The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem 258:4019–4025

    CAS  PubMed  Google Scholar 

  • Kaplan MP, Chin SS, Fliegner KH, Liem RK (1990) Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 10:2735–2748

    CAS  PubMed  Google Scholar 

  • Kriz J, Meier J, Julien JP, Padjen AL (2000a) Altered ionic conductances in axons of transgenic mouse expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Exp Neurol 163:414–421

    Article  CAS  PubMed  Google Scholar 

  • Kriz J, Zhu Q, Julien JP, Padjen AL (2000b) Electrophysiological properties of axons in mice lacking neurofilament subunit genes: disparity between conduction velocity and axon diameter in absence of NF-H. Brain Res 885:32–44

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Hoh JH (2004) Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochem Biophys Res Commun 324:489–496

    Article  CAS  PubMed  Google Scholar 

  • Lariviere RC, Julien JP (2004) Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58:131–148

    Article  CAS  PubMed  Google Scholar 

  • Lariviere RC, Nguyen MD, Ribeiro-da-Silva A, Julien JP (2002) Reduced number of unmyelinated sensory axons in peripherin null mice. J Neurochem 81:525–532

    Article  CAS  PubMed  Google Scholar 

  • Leake D, Asch WS, Canger AK, Schechter N (1999) Gefiltin in zebrafish embryos: sequential gene expression of two neurofilament proteins in retinal ganglion cells. Differentiation 65:181–189

    Article  CAS  PubMed  Google Scholar 

  • Lee VM, Otvos L Jr, Carden MJ, Hollosi M, Dietzschold B, Lazzarini RA (1988) Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci USA 85:1998–2002

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Xu Z, Wong PC, Cleveland DW (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122:1337–1350

    Article  CAS  PubMed  Google Scholar 

  • Letournel F, Bocquet A, Perrot R, Dechaume A, Guinut F, Eyer J, Barthelaix A (2006) Neurofilament high molecular weight-green fluorescent protein fusion is normally expressed in neurons and transported in axons: a neuronal marker to investigate the biology of neurofilaments. Neuroscience 137:103–111

    Article  CAS  PubMed  Google Scholar 

  • Levavasseur F, Zhu Q, Julien JP (1999) No requirement of alpha-internexin for nervous system development and for radial growth of axons. Brain Res Mol Brain Res 69:104–112

    Article  CAS  PubMed  Google Scholar 

  • Lewis SE, Nixon RA (1988) Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. J Cell Biol 107:2689–2701

    Article  CAS  PubMed  Google Scholar 

  • Li ZH, Lu J, Tay SS, Wu YJ, Strong MJ, He BP (2006) Mice with targeted disruption of neurofilament light subunit display formation of protein aggregation in motoneurons and downregulation of complement receptor type 3 alpha subunit in microglia in the spinal cord at their earlier age: a possible feature in pre-clinical development of neurodegenerative diseases. Brain Res 1113:200–209

    Article  CAS  PubMed  Google Scholar 

  • McLean JR, Sanelli TR, Leystra-Lantz C, He BP, Strong MJ (2005) Temporal profiles of neuronal degeneration, glial proliferation, and cell death in hNFL(+/+) and NFL(–/–) mice. Glia 52:59–69

    Article  PubMed  Google Scholar 

  • Millecamps S, Gowing G, Corti O, Mallet J, Julien JP (2007) Conditional NF-L transgene expression in mice for in vivo analysis of turnover and transport rate of neurofilaments. J Neurosci 27:4947–4956

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MD, Lariviere RC, Julien JP (2000) Reduction of axonal caliber does not alleviate motor neuron disease caused by mutant superoxide dismutase 1. Proc Natl Acad Sci USA 97:12306–12311

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Brown BA, Marotta CA (1982) Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons. J Cell Biol 94:150–158

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Paskevich PA, Sihag RK, Thayer CY (1994) Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol 126:1031–1046

    Article  CAS  PubMed  Google Scholar 

  • Ohara O, Gahara Y, Miyake T, Teraoka H, Kitamura T (1993) Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J Cell Biol 121:387–395

    Article  CAS  PubMed  Google Scholar 

  • Pant HC, Veeranna (1995) Neurofilament phosphorylation. Biochem Cell Biol 73:575–592

    CAS  PubMed  Google Scholar 

  • Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38:27–65

    Article  CAS  PubMed  Google Scholar 

  • Perrot R, Lonchampt P, Peterson AC, Eyer J (2007) Axonal neurofilaments control multiple fiber properties but do not influence structure or spacing of nodes of Ranvier. J Neurosci 27:9573–9584

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Campbell J, Yuan A, Kumar A, Gotow T, Uchiyama Y, Nixon RA (2003) The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol 163:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Garcia ML, Miyazaki Y, Gotow T, Yuan A, Mattina S, Ward CM, Calcutt NA, Uchiyama Y, Nixon RA, Cleveland DW (2002) Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J Cell Biol 158:681–693

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Houseweart MK, Williamson TL, Crawford TO, Folmer J, Cleveland DW (1998) Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J Cell Biol 143:171–181

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi T, Okada M, Kitamura T, Kawasaki K (1993) Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 153:65–68

    Article  CAS  PubMed  Google Scholar 

  • Sanchez I, Hassinger L, Paskevich PA, Shine HD, Nixon RA (1996) Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J Neurosci 16:5095–5105

    CAS  PubMed  Google Scholar 

  • Shea TB, Beermann ML (1999) Neuronal intermediate filament protein alpha-internexin facilitates axonal neurite elongation in neuroblastoma cells. Cell Motil Cytoskeleton 43:322–333

    Article  CAS  PubMed  Google Scholar 

  • Tu PH, Robinson KA, de Snoo F, Eyer J, Peterson A, Lee VM, Trojanowski JQ (1997) Selective degeneration fo Purkinje cells with Lewy body-like inclusions in aged NFHLACZ transgenic mice. J Neurosci 17:1064–1074

    CAS  PubMed  Google Scholar 

  • Williamson TL, Bruijn LI, Zhu Q, Anderson KL, Anderson SD, Julien JP, Cleveland DW (1998) Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci USA 95:9631–9636

    Article  CAS  PubMed  Google Scholar 

  • Wong J, Oblinger MM (1990) Differential regulation of peripherin and neurofilament gene expression in regenerating rat DRG neurons. J Neurosci Res 27:332–341

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Itakura C, Mizutani M (1991) Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail. Acta Neuropathol 82:427–434

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jensen K, Brown A (2007) The polypeptide composition of moving and stationary neurofilaments in cultured sympathetic neurons. Cell Motil Cytoskeleton 64:299–309

    Article  CAS  PubMed  Google Scholar 

  • Yuan A, Rao MV, Kumar A, Julien JP, Nixon RA (2003) Neurofilament transport in vivo minimally requires hetero-oligomer formation. J Neurosci 23:9452–9458

    CAS  PubMed  Google Scholar 

  • Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna, Liem RK, Eyer J, Peterson AC, Julien JP, Nixon RA (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Szaro BG (1997) Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration. J Neurobiol 33:811–824

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Couillard-Despres S, Julien JP (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148:299–316

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Lindenbaum M, Levavasseur F, Jacomy H, Julien JP (1998) Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta,beta’-iminodipropionitrile. J Cell Biol 143:183–193

    Article  CAS  PubMed  Google Scholar 

  • Zochodne DW, Sun HS, Cheng C, Eyer J (2004) Accelerated diabetic neuropathy in axons without neurofilaments. Brain 127:2193–2200

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

J.-P.J. holds a Canada Research Chair in neurodegeneration and R.P. is the recipient of the Tim E. Noël Fellowship (ALS Society of Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Julien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Perrot, R., Julien, JP. (2011). Knockout Models of Neurofilament Proteins. In: Nixon, R., Yuan, A. (eds) Cytoskeleton of the Nervous System. Advances in Neurobiology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6787-9_12

Download citation

Publish with us

Policies and ethics