On the Construction of Minimal Cell Models in Synthetic Biology and Origins of Life Studies

  • Pasquale Stano
  • Pier Luigi Luisi


In this chapter we describe the concept of minimal living cells, defined as synthetic or semi-synthetic cells having the minimal and sufficient number of components to be endowed with the main biological properties of living cells. The construction of minimal cells starting from isolated compounds is an issue in synthetic biology, origins of life studies, and biotechnology. We start by discussing the different concepts underlining the three above-mentioned fields, by comparing the different viewpoints and highlighting common perspectives. We focus on the first two approaches, firstly describing our recent investigation on the construction of semi-synthetic minimal cells (developed in the Synthcells project), based on the use of liposomes as cell models. A short review of most relevant studies in the field is also given. The emphasis is then shifted to more basic biophysical aspects that emerged from these studies and that can significantly contribute to the understanding of the origins of primitive cells. In particular, we report the unexpected finding of spontaneous self-concentration of proteins and other solutes inside lipid vesicles. This recent discovery gives rise to a several theoretical and experimental implications that are shortly discussed. As a conclusion, we comment on the state-of-the-art in the field, next developments, and future challenges, and highlight how this research may contribute to improve our understanding of life.


Autopoiesis Minimal living cells Autopoiesis Self-reproduction Semi-synthetic cells Liposomes Origins of life Protocells Fatty acids 



This work has been funded by the SYNTHCELLS project (Approaches to the Bioengineering of Synthetic Minimal Cells, EU FP6 Grant #FP6 043359); by the Human Frontiers Science Program (RGP0033/2007-C); by the Italian Space Agency (Grant Nr. I/015/07/0); and by the Italian PRIN2008 program (Grant Nr. 2008FY7RJ4). It is also developed within the COST Systems Chemistry CM0703 Action.


  1. 1.
    Asahara H, Chong S (2010) In vitro genetic reconstruction of bacterial transcription initiation by coupled synthesis and detection of RNA polymerase holoenzyme. Nucleic Acids Res doi:10.1093/nar/gkq377Google Scholar
  2. 2.
    Bachmann PA, Walde P, Luisi PL, Lang J (1990) Self-replicating reverse micelles and chemical autopoiesis. J Am Chem Soc 112:8200–8201CrossRefGoogle Scholar
  3. 3.
    Bachmann PA, Luisi PL, Lang J (1992) Autocatalytic selfreplicating micelles as models for prebiotic structures. Nature 357:57–59CrossRefGoogle Scholar
  4. 4.
    Balasubramanian V, Onaca O, Enea R, Hughes DW, Palivan CG (2010) Protein delivery: from conventional drug delivery carriers to polymeric nanoreactors. Expert Opin Drug Deliv 7:63–78CrossRefGoogle Scholar
  5. 5.
    Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668CrossRefGoogle Scholar
  6. 6.
    Berclaz N, Bloechliger E, Mueller M, Luisi PL (2001b) Matrix effect of vesicle formation as investigated by cryotransmission electron microscopy. J Phys Chem B 105:1065–1071CrossRefGoogle Scholar
  7. 7.
    Berclaz N, Mueller M, Walde P, Luisi PL (2001a) Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J Phys Chem B 105:1056–1064CrossRefGoogle Scholar
  8. 8.
    Bitbol M, Luisi PL (2004) Autopoiesis with or without cognition: defining life at its edge. J R Soc Interface 1:99–107CrossRefGoogle Scholar
  9. 9.
    Bloechliger E, Blocher M, Walde P, Luisi PL (1998) Matrix effect in the size distribution of fatty acid vesicles. J Phys Chem 102:10383–10390Google Scholar
  10. 10.
    Budin I, Szostak JW (2010) Expanding roles for diverse physical phenomena during the origin of life. Annu Rev Biophys 39:245–263CrossRefGoogle Scholar
  11. 11.
    Carrara P (2010) Studies on giant vesicles as minimal cell models. PhD thesis, in Italian, University of RomaTre, RomeGoogle Scholar
  12. 12.
    Caschera F, Stano P, Luisi PL (2010) Reactivity and fusion between cationic vesicles and fatty acid anionic vesicles. J Colloid Interface Sci 345:561–565CrossRefGoogle Scholar
  13. 13.
    Chakrabarti AC, Breaker RR, Joyce GF, Deamer DW (1994) Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J Mol Evol 39:555–559CrossRefGoogle Scholar
  14. 14.
    Chang MTS (1987) Recycling of NAD(P) by multienzyme systems immobilized by microencapsulation in artificial cells. Method Enzymol 136:67–82CrossRefGoogle Scholar
  15. 15.
    Chen IA, Szostak JW (2004a) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998CrossRefGoogle Scholar
  16. 16.
    Chen I, Szostak JW (2004b) The emergence of competition between model protocells. Science 305:1474–1476CrossRefGoogle Scholar
  17. 17.
    Cheng Z, Luisi PL (2003) Coexistence and mutual competition of vesicles with different size distributions. J Phys Chem B 107:10940–10945CrossRefGoogle Scholar
  18. 18.
    Chiarabelli C, Stano P, Luisi PL (2009) Chemical approaches to synthetic biology. Curr Opin Biotechnol 20:492–497CrossRefGoogle Scholar
  19. 19.
    Choi HJ, Montemagno CD (2007) Light-driven hybrid bioreactor based on protein-incorporated polymer vesicles. IEEE Trans Nanotechnol 6:171–176CrossRefGoogle Scholar
  20. 20.
    Chungcharoenwattana S, Ueno M (2004) Size control of mixed egg yolk phosphatidylcholine EggPC/oleate vesicles. Chem Pharm Bull 52:1058–1062CrossRefGoogle Scholar
  21. 21.
    Cronin L, Krasnogor N, Davis BG, Alexander C, Robertson N, Steinke JH, Schroeder SL, Khlobystov AN, Cooper G, Gardner PM, Siepmann P, Whitaker BJ, Marsh D (2006) The imitation game – a computational chemical approach to recognizing life. Nat Biotechnol 24:1203–1206CrossRefGoogle Scholar
  22. 22.
    D’Aguanno E (2009) Studies on prebiotic models of ribosomes. Graduate thesis, in Italian, University of RomaTre, RomeGoogle Scholar
  23. 23.
    De Lorenzo V, Danchin A (2008) Synthetic biology: discovering new worlds and new words. EMBO Rep 9(9):822–827CrossRefGoogle Scholar
  24. 24.
    Deamer DW, Oro J (1980) Role of lipids in prebiotic structures. Biosystems 12:167–175CrossRefGoogle Scholar
  25. 25.
    Delaittre G, Reynhout IC, Cornelissen JJLM, Nolte RJM (2009) Cascade reactions in an all-enzyme nanoreactor. Chem Eur J 15:12600–12603CrossRefGoogle Scholar
  26. 26.
    Fiordemondo D, Stano P (2007) Lecithin-based water-in-oil compartments as dividing bioreactors. Chembiochem 8:1965–1973CrossRefGoogle Scholar
  27. 27.
    Fischer A, Franco A, Oberholzer T (2002) Giant vesicles as microreactors for enzymatic mRNA synthesis. Chembiochem 3:409–417CrossRefGoogle Scholar
  28. 28.
    Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2:45CrossRefGoogle Scholar
  29. 29.
    Forster AC, Church GM (2007) Synthetic biology projects in vitro. Genome Res 17:1–6CrossRefGoogle Scholar
  30. 30.
    Freisleben HJ, Zwicker K, Jezek P, John G, Bettin-Bogutzki A, Ring K, Nawroth T (1995) Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Chem Phys Lipids 78:137–147CrossRefGoogle Scholar
  31. 31.
    Gardner PM, Winzer K, Davis BG (2009) Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat Chem 1:377–383CrossRefGoogle Scholar
  32. 32.
    Gebicki JM, Hicks M (1973) Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243:232–234CrossRefGoogle Scholar
  33. 33.
    Gibson DG et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56CrossRefGoogle Scholar
  34. 34.
    Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacteria gene set. Microbiol Mol Biol Rev 68:518–537CrossRefGoogle Scholar
  35. 35.
    Gilbert W (1986) The RNA world. Nature 319:618–618CrossRefGoogle Scholar
  36. 36.
    Graff A, Winterhalter M, Meier W (2001) Nanoreactors from polymer-stabilized liposomes. Langmuir 17:919–923CrossRefGoogle Scholar
  37. 37.
    Hargreaves WR, Deamer D (1978) Liposomes from ionic, single-chain amphiphiles. Biochemistry 17:3759–3768CrossRefGoogle Scholar
  38. 38.
    Haruna I, Nozu K, Ohtaka Y, Spiegelman S (1963) An RNA replicase induced by and selected for a viral RNA. Isolation and properties. Proc Natl Acad Sci USA 50:905–911CrossRefGoogle Scholar
  39. 39.
    Hill KJ, Kaszuba M, Creeth JE, Jones MN (1997) Reactive liposomes encapsulating a glucose oxidase-peroxidase system with antibacterial activity. Biochim Biophys Acta 1326:37–46CrossRefGoogle Scholar
  40. 40.
    Hosoda K, Sunami T, Kazuta Y, Matsuura T, Suzuki H, Yomo T (2008) Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir 24:13540–13548CrossRefGoogle Scholar
  41. 41.
    Ishikawa K, Sato K, Shima Y, Urabe I, Yomo T (2004) Expression of a cascading genetic network within liposomes. FEBS Lett 576:387–390CrossRefGoogle Scholar
  42. 42.
    Jewett MC, Forster AC (2010) Update on designing and building minimal cells. Curr Opin Biotechnol doi:10.1016/j.copbio.2010.06.008Google Scholar
  43. 43.
    Kajander EO, Ciftcioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95:8274–8279CrossRefGoogle Scholar
  44. 44.
    Kaszuba M, Jones MN (1999) Hydrogen peroxide production from reactive liposomes encapsulating enzymes. Biochim Biophys Acta 1419:221–228CrossRefGoogle Scholar
  45. 45.
    Kita H, Matsuura T, Sunami T, Hosoda K, Ichihashi N, Tsukada K, Urabe I, Yomo T (2008) Replication of genetic information with self-encoded replicase in liposomes. Chembiochem 9:2403–2410CrossRefGoogle Scholar
  46. 46.
    Knoll A, Osborn MJ (eds) (1999) Size limits of very small microorganisms. National Academic Press, Washington, DCGoogle Scholar
  47. 47.
    Kuruma Y, Stano P, Ueda T, Luisi PL (2009) A synthetic biology approach to the construction of membrane proteins in semisynthetic minimal cells. Biochim Biophys Acta 1788:567–574CrossRefGoogle Scholar
  48. 48.
    Kuruma Y, Suzuki T, Ueda T (2010) Production of multi-subunit complexes on liposome through an E. coli cell-free expression system. Methods Mol Biol 607:161–171CrossRefGoogle Scholar
  49. 49.
    Kwok R (2010) Five hard truths for synthetic biology. Nature 463:288–290CrossRefGoogle Scholar
  50. 50.
    Lasic DD, Papahadjopoulos D (eds) (1998) Medical applications of liposomes. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Lawless JG, Yuen GU (1979) Quantitation of monocarboxylic acids in the Murchison carbonaceous meteorite. Nature 282:431–454CrossRefGoogle Scholar
  52. 52.
    Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232CrossRefGoogle Scholar
  53. 53.
    Lonchin S, Luisi PL, Walde P, Robinson BH (1999) A matrix effect in mixed phospholipid/fatty acid vesicle formation. J Phys Chem B 103:10910–10916CrossRefGoogle Scholar
  54. 54.
    Luisi PL (1998) About various definitions of life. Orig Life Evol Biosph 28:613–622CrossRefGoogle Scholar
  55. 55.
    Luisi PL (2002) Toward the engineering of minimal living cells. Anat Rec 268:208–214CrossRefGoogle Scholar
  56. 56.
    Luisi PL (2003) Autopoiesis: a review and a reappraisal. Naturwissenschaften 90:49–59Google Scholar
  57. 57.
    Luisi PL (2006) The emergence of life: from chemical origin to synthetic biology. Cambridge University Press, CambridgeGoogle Scholar
  58. 58.
    Luisi PL (2007) Chemical aspects of synthetic biology. Chem Biodivers 4:603–621CrossRefGoogle Scholar
  59. 59.
    Luisi PL (2010a) Epistemology notes on synthetic biology. In: Chiarabelli C, Luisi PL (eds) Chemical synthetic biology. Wiley, New York, pp 343–362Google Scholar
  60. 60.
    Luisi PL (2010b) On the minimal cell. Orig Life Evol Biosph 40:464–466Google Scholar
  61. 61.
    Luisi PL, Allegretti M, Souza T, Steineger F, Fahr A, Stano P (2010) Spontaneous protein crowding in liposomes: A new vista for the origin of cellular metabolism. ChemBiochem 11:1989–1992CrossRefGoogle Scholar
  62. 62.
    Luisi PL, Varela FJ (1990) Self-replicating micelles – a chemical version of minimal autopoietic systems. Orig Life Evol Biosph 19:633–643CrossRefGoogle Scholar
  63. 63.
    Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwiss 93:1–13CrossRefGoogle Scholar
  64. 64.
    Luisi PL, Oberholzer T, Lazcano A (2002) The notion of a DNA minimal cell: a general discourse and some guidelines for an experimental approach. Helv Chim Acta 85:1759–1777CrossRefGoogle Scholar
  65. 65.
    Luisi PL, Souza T, Stano P (2008) Vesicle behavior: in search of explanations. J Phys Chem B 112:14655–14664CrossRefGoogle Scholar
  66. 66.
    Luisi PL, Stano P, Rasi S, Mavelli F (2004) A possible route to prebiotic vesicle reproduction. Artif Life 10:297–308CrossRefGoogle Scholar
  67. 67.
    Mansy SS, Szostak JW (2009) Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb Symp Quant Biol LXXIV:1–8Google Scholar
  68. 68.
    Mansy S, Schrum JP, Krishnamurthy M, Tobé S, Treco DA, Szostak JW (2008) Template directed synthesis of a genetic polymer in a model protocell. Nature 454:122–125CrossRefGoogle Scholar
  69. 69.
    McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:153–166CrossRefGoogle Scholar
  70. 70.
    Mills DR, Peterson RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci USA 58:217–224CrossRefGoogle Scholar
  71. 71.
    Monnard PA, Deamer DW (2002) Membrane self-assembly processes: steps toward the first cellular life. Anat Rec 268:196–207CrossRefGoogle Scholar
  72. 72.
    Morigaki K, Dallavalle S, Walde P, Colonna S, Luisi PL (1997) Autopoietic self-reproduction of chiral fatty acid vesicles. J Am Chem Soc 119:292–301CrossRefGoogle Scholar
  73. 73.
    Morowitz H (1992) Beginnings of cellular life. Metabolism recapitulates biogenesis. Yale University Press, New Haven, CTGoogle Scholar
  74. 74.
    Murtas G (2009) Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell. Syst Synth Biol. doi: 10.1007/s11693-009-9048-1Google Scholar
  75. 75.
    Murtas G, Kuruma Y, Bianchini P, Diaspro A, Luisi PL (2007) Protein synthesis in liposomes with a minimal set of enzymes. Biochem Biophys Res Commun 363:12–17CrossRefGoogle Scholar
  76. 76.
    Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci USA 101:17669–17674CrossRefGoogle Scholar
  77. 77.
    Nomura SM, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y, Yoshikawa K (2003) Gene expression within cell-sized lipid vesicles. Chembiochem 4:1172–1175CrossRefGoogle Scholar
  78. 78.
    Oberholzer T, Albrizio M, Luisi PL (1995a) Polymerase chain reaction in liposomes. Chem Biol 2:677–682CrossRefGoogle Scholar
  79. 79.
    Oberholzer T, Luisi PL (2002) The use of liposomes for constructing cell models. J Biol Phys 28:733–744CrossRefGoogle Scholar
  80. 80.
    Oberholzer T, Meyer E, Amato I, Lustig A, Monnard PA (1999) Enzymatic reactions in liposomes using the detergent-induced liposome loading method. Biochim Biophys Acta 1416:57–68CrossRefGoogle Scholar
  81. 81.
    Oberholzer T, Nierhaus KH, Luisi PL (1999) Protein expression in liposomes. Biochem Biophys Res Commun 261:238–241CrossRefGoogle Scholar
  82. 82.
    Oberholzer T, Wick R, Luisi PL, Biebricher CK (1995) Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem Biophys Res Commun 207:250–257CrossRefGoogle Scholar
  83. 83.
    Oparin AI, Serebrowskaya KB, Auerman TL (1961) Biokhimiya 26:499–504Google Scholar
  84. 84.
    Pitard B, Richard P, Dunarach M, Girault G, Rigaiud JL (1996) ATP synthesis by the F0F1 ATP synthase from Thermophilic bacillus PS3 reconstituted into liposomes with bacteriorhodopsin 1. Factors defining the optimal reconstitution of ATP synthases with bacteriorhodopsin. Eur J Biochem 235:769–778Google Scholar
  85. 85.
    Pohorille A, Deamer D (2002) Artificial cells: prospects for biotechnology. Trends Biotechnol 20:123–128CrossRefGoogle Scholar
  86. 86.
    Rasi S, Mavelli F, Luisi PL (2003) Cooperative micelle binding and matrix effect in oleate vesicle formation. J Phys Chem B 107:14068–14076CrossRefGoogle Scholar
  87. 87.
    Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF, Bedau MA (2004) Evolutionary transitions from nonliving to living matter. Science 303:963–965CrossRefGoogle Scholar
  88. 88.
    Rogerson ML, Robinson BH, Bucak S, Walde P (2006) Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloid Surface B 48:24–34CrossRefGoogle Scholar
  89. 89.
    Ruiz-Mirazo K, Luisi PL (2010) Open questions on the origins of life: introduction to the special issue. Orig Life Evol Biosph 40:353–355CrossRefGoogle Scholar
  90. 90.
    Rushdi AI, Simoneit BRT (2001) Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400  ∘ C. Orig Life Evol Biosph 31:103–118CrossRefGoogle Scholar
  91. 91.
    Saito H, Kato Y, Le Berre M, Yamada A, Inoue T, Yoshikawa K, Baigl D (2009) Time-resolved tracking of a minimum gene expression system reconstituted in giant liposomes. Chembiochem 10:1640–1643CrossRefGoogle Scholar
  92. 92.
    Schmidli PK, Schurtenberger P, Luisi PL (1991) Liposome mediated enzymatic synthesis of phosphatidylcholine as an approach to self-replicating liposomes. J Am Chem Soc 113: 8127–8130CrossRefGoogle Scholar
  93. 93.
    Schrum JP, Zhu TF, Szostak JW (2010) The origins of cellular life. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a002212Google Scholar
  94. 94.
    Shapiro R (2007) A simpler origin for life. Sci Am 296:46–53CrossRefGoogle Scholar
  95. 95.
    Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell free translation reconstituted with purified components. Nat. Biotechnol 19:751–755CrossRefGoogle Scholar
  96. 96.
    Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36:299–304CrossRefGoogle Scholar
  97. 97.
    Shohda K, Sugawara T (2006) DNA polymerization on the inner surface of a giant liposome for synthesizing an artificial cell model. Soft Matter 2:402–408CrossRefGoogle Scholar
  98. 98.
    Souza T, Stano P, Luisi PL (2009) The minimal size of liposome-based model cells brings about a remarkably enhanced biological activity. Chembiochem 10:1056–1063CrossRefGoogle Scholar
  99. 99.
    Stano P, Luisi PL (2007) Basic questions about the origins of life: proceedings of the erice international school of complexity (fourth course). Orig Life Evol Biosph 37:303–307CrossRefGoogle Scholar
  100. 100.
    Stano P, Luisi PL (2010a) Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem Commun 46:3639–3653CrossRefGoogle Scholar
  101. 101.
    Stano P, Luisi PL (2010b) Reactions in liposomes. In: Brinker UH, Mieusset JL (eds) Molecular encapsulation: organic reactions in constrained systems. Wiley, Chichester, pp 455–491CrossRefGoogle Scholar
  102. 102.
    Stano P, Wehrli E, Luisi PL (2006) Insights on the oleate vesicles self-reproduction. J Phys Condens Matter 18:S2231–S2238CrossRefGoogle Scholar
  103. 103.
    Sunami T, Hosoda K, Suzuki H, Matsuura T, Yomo T (2010) Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions. Langmuir 26:8544–8551CrossRefGoogle Scholar
  104. 104.
    Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390CrossRefGoogle Scholar
  105. 105.
    Treyer M, Walde P, Oberholzer T (2002) Permeability enhancement of lipid vesicles to nucleotides by use of sodium cholate: basic studies and application to an enzyme-catalyzed reaction occurring inside the vesicles. Langmuir 18:1043–1050CrossRefGoogle Scholar
  106. 106.
    Tsumoto K, Nomura SM, Nakatani Y, Yoshikawa K (2001) Giant liposome as a biochemical reactor: transcription of DNA and transportation by laser tweezers. Langmuir 17:7225–7228CrossRefGoogle Scholar
  107. 107.
    Vamvakaki V, Fournier D, Chaniotakis NA (2005) Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosens Bioelectron 21:384–388CrossRefGoogle Scholar
  108. 108.
    Van Dongen SFM, Nallani M, Cornelissen JJLM, Nolte RJM, van Hest JCM (2009) A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chem Eur J 15:1107–1114CrossRefGoogle Scholar
  109. 109.
    Varela F, Maturana HR, Uribe RB (1974) Autopoiesis: the organization of living system, its characterization and a model. Biosystems 5:187–196CrossRefGoogle Scholar
  110. 110.
    Walde P, Ichikawa S (2001) Enzymes inside vesicles: preparation, reactivity and applications. Biomol Eng 18:143–177CrossRefGoogle Scholar
  111. 111.
    Walde P, Wick R, Fresta M, Mangone A, Luisi PL (1994a) Autopoietic self-reproduction of fatty acid vesicles. J Am Chem Soc 116:11649–11654CrossRefGoogle Scholar
  112. 112.
    Walde P, Goto A, Monnard PA, Wessicken M, Luisi PL (1994b) Oparin’s reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J Am Chem Soc 116:7541–7544CrossRefGoogle Scholar
  113. 113.
    Woese CR (1979) A proposal concerning the origin of life on the planet Earth. J Mol Evol 13:95–101CrossRefGoogle Scholar
  114. 114.
    Yamaji K, Kanai T, Nomura SM, Akiyoshi K, Negishi M, Chen Y, Atomi H, Yoshikawa K, Imanaka T (2009) Protein synthesis in giant liposomes using the in vitro translation system of Thermococcus kodakaraensis. IEEE Trans Nanobiosci 8:325–331CrossRefGoogle Scholar
  115. 115.
    Yoshimoto M, Wang S, Fukunaga K, Fournier D, Walde P, Kuboi R, Nakao K (2005) Novel immobilized liposomal glucose oxidase system using the channel protein OmpF and catalase. Biotechnol Bioeng 90:231–238CrossRefGoogle Scholar
  116. 116.
    Yu W, Sato K, Wakabayashi M, Nakatshi T, Ko-Mitamura EP, Shima Y, Urabe I, Yomo T (2001) Synthesis of functional protein in liposome. J Biosci Bioeng 92:590–593CrossRefGoogle Scholar
  117. 117.
    Zepik HH, Bloechliger E, Luisi PL (2001) A chemical model of homeostasis. Angew Chem Int Ed 40:199–202CrossRefGoogle Scholar
  118. 118.
    Zhang Y, Ruder WC, LeDuc PR (2008) Artificial cells: building bioinspired systems using small-scale biology. Trends Biotechnol 26:14–20CrossRefGoogle Scholar
  119. 119.
    Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Biology DepartmentUniversity of Roma TreRomeItaly

Personalised recommendations