Advertisement

Approaches to Identify Environmental and Epigenomic Components or Covariates of Cancer and Disease Susceptibility

  • Alok DeorajEmail author
  • Deodutta Roy
Chapter

Abstract

A complex disease such as cancer is one of the major public health burdens for the United States and developing societies. A combination of variations in multiple genes and environmental factors contribute to the susceptibility and progression of different diseases. Comprehensive understanding of the interactions between multiple genetic and environmental factors will more accurately predict a risk of contracting a disease or a particular cancer and treatment response to explain the etiology than any single genetic or environmental factor. Although advances in the knowledge of measuring genetic variants and the amount of data available has steadily been increasing, a major barrier to further the success of molecular epidemiology studies, especially those with a environment-gene interactions, is to determine an appropriate methodological strategy for analysis and interpretation of results. Here we describe approaches to measure genome wide genetic variation and suggest resources to conduct gene × environment (G×E) interaction analysis. We also describe epigenomics that how it may play an important role in enhancing the risk for complex diseases such as cancer. Study of G×E interactions aim to describe how genetic and environmental factors jointly influence the risk of developing a disease. Analysis of G×E interactions take into account the various ways in which genetic effects are modified due to environmental exposures. The number of levels of these exposures and the model on which the genetic effects can be based are also discussed in this chapter. Choice of study design, sample size and genotyping technology influence the analysis and interpretation of observed G×E interactions. Current systems for reporting epidemiological studies make it difficult to assess whether the observed interactions are reproducible. Suggestions are made for improvements in this area.

Keywords

Biomarkers of environmental and epigenomic components or covariates of cancer Disease susceptibility Interactions between multiple genetic and environmental factors Genome wide genetic variation 

References

  1. Barnes, M.R. 2006. Navigating the HapMap. Brief Bioinform. 7(3):211–24.PubMedCrossRefGoogle Scholar
  2. Boffetta, P., McLaughlin, J.K., La Vecchia, C., Tarone, R.E., Lipworth, L., Blot, W.J. 2008. False-positive results in cancer epidemiology: a plea for epistemological modesty. J. Natl. Cancer Inst. 100(14):988–95.PubMedCrossRefGoogle Scholar
  3. Botto, L.D., Khoury, M.J. 2001. Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am. J. Epidemiol. 153(10):1016–20.PubMedCrossRefGoogle Scholar
  4. Brennan, P. 2002. Gene-environment interaction and aetiology of cancer: what does it mean and how can we measure it? Carcinogenesis 23(3):381–7.PubMedCrossRefGoogle Scholar
  5. Brown, J.R., Thornton, J.L. 1957. Percivall Pott (1714–1788) and chimney sweepers’ cancer of the scrotum. Br. J. Ind. 14(1):68–70.Google Scholar
  6. Carter, N.P. 2007. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 39:S16–21.PubMedCrossRefGoogle Scholar
  7. Chanock, S.J., Manolio, T., Boehnke, M., Boerwinkle, E., Hunter, D.J., Thomas, G., Hirschhorn, J.N., Abecasis, G., Altshuler, D., Bailey-Wilson, J.E., Brooks, L.D., Cardon, L.R., Daly, M., Donnelly, P., Fraumeni, J.F., Freimer, N.B., Gerhard, D.S., Gunter, C., Guttmacher, A.E., Guyer, M.S., Harris, E.L., Hoh, J., Hoover, R., Kong, C.A., Merikangas, K.R., Morton, C.C., Palmer, L.J., Phimister, E.G., Rice, J.P., Roberts, J., Rotimi, C., Tucker, M.A., Vogan, K.J., Wacholder, S., Wijsman, E.M., Winn, D.M., Collins, F.S. 2007. Replicating genotype-phenotype associations. Nature 447:655–60.PubMedCrossRefGoogle Scholar
  8. Constantine, C.C., Gurrin L.C., McLaren, C.E., Gurrin, L.C., McLaren, C.E., Bahlo, M., Anderson, G.J., Vulpe, C.D., Forrest, S.M., Allen, K.J., Gertig, D.M., The Health Iron Investigators. 2008. SNP selection for genes of iron metabolism in a study of genetic modifiers of hemochromatosis. BMC Med. Genet. 9:18.PubMedCrossRefGoogle Scholar
  9. Deloukas, P., Bentley, D. 2004. The HapMap project and its application to genetic studies of drug response. Pharmacogenom. J. 4(2):88–90.CrossRefGoogle Scholar
  10. Dolinoy, D.C., Weidman, J.R., Jirtle, R.L. 2007a. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod. Toxicol. 23(3):297–307.PubMedCrossRefGoogle Scholar
  11. Dolinoy, D.C., Das, R., Weidman, J.R., Jirtle, R.L. 2007b. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr. Res. 61:30R–37R.PubMedCrossRefGoogle Scholar
  12. Foley, D.L., Craig, J.M., Morley, R., Olsson, C.A., Dwyer, T., Smith, K., Saffery, R. 2009. Prospects for epigenetic epidemiology. Am. J. Epidemiol. 169(4):389–400.Google Scholar
  13. Francis, P.J., Schultz, D.W., Hamon, S., Ott, J., Weleber, R.G., Klein, M.L. 2007. Haplotypes in the complement factor H (CFH) gene: associations with drusen and advanced age-related macular degeneration. PloS One 2(11):e1197.PubMedCrossRefGoogle Scholar
  14. George, R.E., Attiyeh, E.F., Li, S., Moreau, L.A., Neuberg, D., Li, C., Fox, E.A., Meyerson, M., Diller, L., Fortina, P., Look, A.T., Maris, J.M. 2007. Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One, 2 (2):e255.PubMedCrossRefGoogle Scholar
  15. Hunter, D.J. 2005. Gene–environment interactions in human diseases. Nat. Rev. 6:287–298.Google Scholar
  16. Huang, B.E., Amos, C.I., Lin, D.Y. 2007. Detecting haplotype effects in genomewide association studies. Genet. Epidemiol. 31(8):803–12.PubMedCrossRefGoogle Scholar
  17. Ioannidis, J.P. 2007. Non-replication and inconsistency in the genome-wide association setting. Hum. Hered. 64:203–13.PubMedCrossRefGoogle Scholar
  18. Jirtle, R.L., Skinner, M.K. 2007. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8:253–62.PubMedCrossRefGoogle Scholar
  19. Keith, T., 2007. Human genome-wide association studies, achieving a sufficient power to detect disease genes with the Quebec founder population. Genet. Eng. Biotechnol. 27:2.Google Scholar
  20. Khoury, M.J., Feero, W.G., Reyes, M., Citrin, T., Freedman, A., Leonard, D., Burke, W., Coates, R., Croyle, R.T., Edwards, K., Kardia, S., McBride, C., Manolio, T., Randhawa, G., Rasooly, R., St Pierre, J., Terry, S. 2009. The genomic applications in practice and prevention network. Genet. Med. 11(7) 488–94.PubMedCrossRefGoogle Scholar
  21. Kraft, P., Hunter, D. 2005. Integrating epidemiology and genetic association: the challenge of gene–environment interaction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360:1609–1616.PubMedCrossRefGoogle Scholar
  22. Laumen, H., Saningong, A.D., Heid, I.M., Hess, J., Herder, C., Claussnitzer, M., Baumert, J., Lamina, C., Rathmann, W., Sedlmeier, E.M., Klopp, N.,Thorand, B., Wichmann, H.E., Illig, T., Hauner, H. 2009. Functional characterization of promoter variants of the adiponectin gene complemented by epidemiological data. Diabetes 58(4):984–91.PubMedCrossRefGoogle Scholar
  23. Lobo, I. 2008. Epistasis: gene interaction and the phenotypic expression of complex diseases like Alzheimer’s. Nat. Educ. 1(1).Google Scholar
  24. Manolio, T.A., Brooks, L.D., Collins, F.S. 2008. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118(5):1590–605.PubMedCrossRefGoogle Scholar
  25. Nautiyal, S., Carlton, V.E.H., Lu, Y., Iteland, J.S., Flaucher, D., Moorhead, M., Gray, J.W., Spellman, P., Mindrinos, M., Berg, P., Faham, M. 2010. High-throughput method for analyzing methylation of CpGs in targeted genomic regions. PNAS published ahead of print June 23, 2010, doi:10.1073/pnas.1005173107.Google Scholar
  26. Rebbeck, T.R., Ambrosone, C.B., Bell, D.A., Chanock, S.J., Hayes, R.B., Kadlubar, F.F., Thomas, D.C. 2004. SNPs, haplotypes, and cancer: applications in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 13(5):681–7.PubMedGoogle Scholar
  27. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., Gonzalez, J.R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., Hurles, M.E. 2006. Global variation in copy number in the human genome. Nature 444(7118):444–54.PubMedCrossRefGoogle Scholar
  28. Richards, J.B., Kavvoura, F.K., Rivadeneira, F., Styrkarsdottir, U., Estrada, K., Halldorsson, B.V., Hsu, Y.H., Zillikens, M.C., Wilson, S.G., Mullin, B.H., Amin, N., Aulchenko, Y.S., Cupples, L.A., Deloukas, P., Demissie, S., Hofman, A., Kong, A., Karasik, D., van Meurs, J.B., Oostra, B.A., Pols, H.A., Sigurdsson, G., Thorsteinsdottir, U., Soranzo, N., Williams, F.M., Zhou, Y., Ralston, S.H., Thorleifsson, G., van Duijn, C.M., Kiel, D.P., Stefansson, K., Uitterlinden, A.G., Ioannidis, J.P., Spector, T.D. 2009. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann. Intern. Med. 151(8):528–37.PubMedGoogle Scholar
  29. Stranger, B.E., Forrest, M.S., Clark, A.G., Stranger, B.E., Forrest, M.S., Clark, A.G., Minichiello, M.J., Deutsch, S., Lyle, R., Hunt, S., Kahl, B., Antonarakis, S.E., Tavare, S., Deloukas, P., Dermitzakis, E.T. 2005. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1(6):e78.PubMedCrossRefGoogle Scholar
  30. Schatzkin, A., Abnet, C.C., Cross, A.J., Gunter, M., Pfeiffer, R., Gail, M., Lim, U., Davey-Smith, G. 2009. Mendelian randomization: how it can – and cannot – help confirm causal relations between nutrition and cancer. Cancer Prev. Res. (Phila. PA) 2(2):104–13.CrossRefGoogle Scholar
  31. Sebat, J. 2007. Major changes in our DNA lead to major changes in our thinking. Nature Genet. 39(Suppl.):53–55.CrossRefGoogle Scholar
  32. Sham, P.C., Cherny, S.S., Purcell, S. 2009. Application of genome-wide SNP data for uncovering pairwise relationships and quantitative trait loci. Genetica 136(2):237–43.PubMedCrossRefGoogle Scholar
  33. Wilson, S., Jones, L., Couseens, C., Hanna, K., eds. 2002. The links between environmental factors, genetics, and the development of Cancer. In Cancer and the Environment, Gene–Enviroment Interaction, pp 25–35. Washington, DC, National Academy Press.Google Scholar
  34. Teare Dawn, M.D., Barrett, J.H., 2005. Genetic linkage studies. The Lancet 366(9490):1036–44.CrossRefGoogle Scholar
  35. Tzu-Hao, W., Hsin-Shih, W. 2009. A genome-wide association study primer for clinicians. Taiwan. J. Obstet. Gynecol. 48(2):89–95.CrossRefGoogle Scholar
  36. Yoon, S., Xuan, Z., Makarov, V., Ye, K., Sebat, J. 2009. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 19(9):1586–92.PubMedCrossRefGoogle Scholar
  37. Zeggini, E, Ioannidis, J.P. 2009. Meta-analysis in genome-wide association studies. Pharmacogenomics. 10(2):191–201.Google Scholar

Copyright information

© Springer Science+ Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Environmental and Occupational HealthFlorida International UniversityMiamiUSA
  2. 2.Department of Environmental and Occupational HealthRobert Stempel College of Public Health & Social Work, Florida International UniversityMiamiUSA

Personalised recommendations