Clustering Studies for Identifying the Role of Environmental Factors in Aetiology of Human Cancers

  • Richard J.Q. McNallyEmail author


This chapter reviews studies that have analysed clustering of cancer. In general, clustering studies may be divided into two distinct categories: (i) studies that are based on post hoc reports of unusual case aggregations; and (ii) studies that are based on rigorous and systematic analyses of population-based data. For each type of analysis, the underlying methodology is briefly described and key findings are summarised and interpreted in relation to putative aetiological factors.


Methods Limitations Etiological interpretation Clustering of cancer 



Childhood cancer epidemiology at Newcastle University is supported by the North of England Children’s Cancer Research Fund.


  1. Alexander, F. E., Williams, J., McKinney, P. A., Ricketts, T. J., and Cartwright, R. A. 1989. A specialist leukaemia/lymphoma registry in the UK. Part 2: Clustering of Hodgkin’s disease. Br. J. Cancer 60:948–952.PubMedCrossRefGoogle Scholar
  2. Alexander, F. E. 1992. Space-time clustering of childhood acute lymphoblastic leukaemia: indirect evidence for a transmissible agent. Br. J. Cancer 65:589–592.PubMedCrossRefGoogle Scholar
  3. Alexander, F. E., and Boyle, P., editors. 1996. Methods for investigating localized clustering of disease. Lyon: International Agency for Research on Cancer, Publ. no. 135.Google Scholar
  4. Alexander, F. E., Chan, L. C., Lam, T. H., Yuen, P., Leung, N. K., Ha, S. Y., Yuen, H. L., Li, C. K., Li, C. K., Lau, Y. L., and Greaves, M. F. 1997. Clustering of childhood leukaemia in Hong Kong: association with the childhood peak and common acute lymphoblastic leukaemia and with population mixing. Br. J. Cancer 75:457–463.PubMedCrossRefGoogle Scholar
  5. Alexander, F. E., Boyle, P., Carli, P. M., Coebergh, J. W., Draper, G. J., Ekbom, A., Levi, F., McKinney, P. A., McWhirter, W., Magnani, C., Michaelis, J., Olsen, J. H., Peris-Bonet, R., Petridou, E., Pukkala, E., and Vatten, L. 1998a. Spatial temporal patterns in childhood leukaemia: further evidence for an infectious origin. EUROCLUS project. Br. J. Cancer 77:812–817.PubMedCrossRefGoogle Scholar
  6. Alexander, F. E., Boyle, P., Carli, P. M., Coebergh, J. W., Draper, G. J., Ekbom, A., Levi, F., McKinney, P. A., McWhirter, W., Michaelis, J. Peris-Bonet, R., Petridou, E., Pompe-Kirn, V., Plisko, I., Pukkala, E., Rahu, M., Storm, H., Terracini, B., Vatten, L., and Wray, N. 1998b. Spatial clustering of childhood leukaemia: summary results from the EUROCLUS project. Br. J. Cancer 77:818–824.PubMedCrossRefGoogle Scholar
  7. Alexander, F. E. 1999. Clusters and clustering of childhood cancer: a review. Eur. J. Epidemiol. 15:847–852.PubMedCrossRefGoogle Scholar
  8. Arrundale, J., Bain, M., Botting, B., Brewster, D., Cartwright, R., Chalmers, J., Coggon, D., Elliott, P., Jackson, I., McKinney, T., McNally, R., Miles, D. P., Quinn, M. J., Sharp, L., Staines, A., Stiller, C., and Wilkinson, P. 1997. Handbook and Guide to the Investigation of Clusters of Diseases. London: Leukaemia Research Fund.Google Scholar
  9. Bailey, T. C., and Gatrell, A. 1995. Interactive Spatial Data Analysis. Harlow: Longman.Google Scholar
  10. Barton, D. E., David, F. N., and Merrington, M. 1965. A criteria for testing contagion in time and space. Ann. Hum. Genet. 29:97–102.CrossRefGoogle Scholar
  11. Bellec, S., Hemon, D., Rudant, J., Goubin, A., and Clavel, J. 2006. Spatial and space-time clustering of childhood acute leukaemia in France from 1990 to 2000: a nationwide study. Br. J. Cancer 94:763–770.PubMedGoogle Scholar
  12. Besag, J., and Newell, J. 1991. The detection of clusters in rare diseases. J. R. Stat. Soc. A 154:143–155.CrossRefGoogle Scholar
  13. Birch, J. M., Alexander, F. E., Blair, V., Eden. O. B., Taylor, G. M., and McNally, R. J. 2000. Space-time clustering patterns in childhood leukaemia support a role for infection. Br. J. Cancer 82:1571–1576.PubMedCrossRefGoogle Scholar
  14. Bosch, F. X., and de Sanjose, S. 2007. The epidemiology of human papillomavirus infection and cervical cancer. Dis. Markers 23:213–227.PubMedGoogle Scholar
  15. Chen, R., Connelly, R. R., and Mantel, N. 1997a. The efficiency of the sets and the cuscore techniques under biased baseline rates. Stat. Med. 16:1401–1411.PubMedCrossRefGoogle Scholar
  16. Chen, R., Iscovich, J., and Goldbourt, U. 1997b. Clustering of leukaemia cases in a city in Israel. Stat. Med. 16:1873–1887.PubMedCrossRefGoogle Scholar
  17. Chia, K. S. 2008. Gene–environment interactions in breast cancer. Novartis Found. Symp. 293:143–150.PubMedCrossRefGoogle Scholar
  18. Committee on Medical Aspects of Radiation in the Environment (COMARE). 2006. Eleventh report – the distribution of childhood leukaemia and other cancers in Great Britain 1969–1993. Chilton, Didcot, Oxfordshire: Health Protection Agency, Radiation Protection Division.Google Scholar
  19. Cuzick, J., and Edwards, R. 1990. Spatial clustering for inhomogeneous populations (with discussion). J. R. Stat. Soc B 52:73–104.Google Scholar
  20. Dickinson, H. O., and Parker, L. 1999. Quantifying the effect of population mixing on childhood leukaemia risk: the Seascale cluster. Br. J. Cancer 81:144–151.PubMedCrossRefGoogle Scholar
  21. Dickinson, H. O., Nyari, T. A., and Parker, L. 2002. Childhood solid tumours in relation to infections in the community in Cumbria during pregnancy and around the time of birth. Br. J. Cancer 87:746–750.PubMedCrossRefGoogle Scholar
  22. Diggle, P. J., Chetwynd, A. G., Haggkvist, R., and Morris, S. E. 1995. Second-order analysis of space-time clustering. Stat. Methods Med. Res. 4:124–136.PubMedCrossRefGoogle Scholar
  23. Dockerty, J. D., Sharples, K. J., and Borman, B. 1999. An assessment of spatial clustering of leukaemias and lymphomas among young people in New Zealand. J. Epidemiol. Comm. Health 53:154–158.CrossRefGoogle Scholar
  24. Draper, G. J., editor. 1991. The Geographical Epidemiology of Childhood Leukaemia and Non-Hodgkin Lymphomas in Great Britain, 1966–83. Studies on Medical and Population Subjects, no. 53. London: HMSO.Google Scholar
  25. Draper, G. J., Stiller, C. A., Cartwright, R. A., Craft, A. W., and Vincent, T. J. 1993. Cancer in Cumbria and in the vicinity of the Sellafield nuclear installation, 1963–90. Br. Med. J. 306:89–94.CrossRefGoogle Scholar
  26. Ederer, F., Myers, M. H., and Mantel, N. 1964. A statistical problem in space and time: do leukemia cases come in clusters? Biometrics 20:626–638.CrossRefGoogle Scholar
  27. Edwards, J. H. 1961. The recognition and estimation of cyclic trends. Ann. Hum. Genet. 25:83–86.PubMedCrossRefGoogle Scholar
  28. Engels, E. A. 2007. Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol. Biomarkers Prev. 16:401–404.PubMedCrossRefGoogle Scholar
  29. Evans, A. S., and Mueller, N. E. 1990. Viruses and cancer. Causal associations. Ann. Epidemiol. 1:71–92.PubMedCrossRefGoogle Scholar
  30. Evatt, B. L., Chase, G. A., and Heath, C. W. 1973. Time-space clustering among cases of acute leukemia in two Georgia counties. Blood 41:265–272.PubMedGoogle Scholar
  31. Fear, N. T., Roman, E., Ansell, P., and Bull, D. 2001. Malignant neoplasms of the brain during childhood: the role of prenatal and neonatal factors (United Kingdom). Cancer Causes Control 12:443–449.PubMedCrossRefGoogle Scholar
  32. Gardner, M. J., Snee, M. P., Hall, A. J., Powell, C. A., Downes, S., and Terrell, J. D. 1990. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. Br. Med. J. 300:423–429.CrossRefGoogle Scholar
  33. Gilman, E. A., and Knox, E. G. 1991. Temporal-spatial distribution of childhood leukaemias and non-Hodgkin’s lymphoma in Great Britain. In: Draper, G. J., editor. The Geographical Epidemiology of Childhood Leukaemia and Non-Hodgkin Lymphomas in Great Britain, 1966–1983. Studies on Medical and Population Subjects no. 53. London: HMSO, 77–99.Google Scholar
  34. Gilman, E. A., and Knox, E. G. 1995. Childhood cancers: space-time distribution in Britain. J. Epidemiol. Commun. Health 49:158–163.CrossRefGoogle Scholar
  35. Gilman, E. A., McNally, R. J., and Cartwright, R. A. 1999a. Space-time clustering of acute lymphoblastic leukaemia in parts of the UK (1984–1993). Eur. J. Cancer 35:91–96.PubMedCrossRefGoogle Scholar
  36. Gilman, E. A., McNally, R. J., and Cartwright, R. A. 1999b. Space-time clustering of Hodgkin’s disease in parts of the UK, 1984–1993. Leuk. Lymphoma 36:85–100.PubMedCrossRefGoogle Scholar
  37. Glass, A. G., Mantel, N., Gunz, F. W., and Spears, G. F. 1971. Time-space clustering of childhood leukemia in New Zealand. J. Natl. Cancer Inst. 47:329–336.PubMedGoogle Scholar
  38. Greaves, M. F. 1988. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 2:120–125.PubMedGoogle Scholar
  39. Grulich, A. E., and Vajdic, C. M. 2005. The epidemiology of non-Hodgkin lymphoma. Pathology 37:409–419.PubMedCrossRefGoogle Scholar
  40. Gunz, F. W., and Spears, G. F. 1968. Distribution of acute leukaemia in time and space. Studies in New Zealand. Br. Med. J. 4:604–608.PubMedCrossRefGoogle Scholar
  41. Gustafsson, B., and Carstensen, J. 2000. Space-time clustering of childhood lymphatic leukaemias and non-Hodgkin’s lymphomas in Sweden. Eur. J. Epidemiol. 16:1111–1116.PubMedCrossRefGoogle Scholar
  42. Heath, C. W., and Hasterlik, R. J. 1963. Leukemia among children in a suburban community. Am. J. Med. 34:796–812.CrossRefGoogle Scholar
  43. Heath, C. W. 2005. Community clusters of childhood leukemia and lymphoma: evidence of infection? Am. J. Epidemiol. 162:817–822.PubMedCrossRefGoogle Scholar
  44. Heinsohn, S., Scholz, R. B., Weber, B., Wittenstein, B., Werner, M., Delling, G., Kempf-Bielack, B., Setlak, P., Bielack, S., and Kabisch, H. 2000. SV40 sequences in human osteosarcoma of German origin. Anticancer Res. 20:4539–4545.PubMedGoogle Scholar
  45. Hemminki, K., Rawal, R., Chen, B., and Bermejo, J. L. 2004. Genetic epidemiology of cancer: from families to heritable genes. Int. J. Cancer 111:944–950.PubMedCrossRefGoogle Scholar
  46. Hjalgrim, H., Rasmussen, S., Rostgaard, K., Nielsen, N. M., Koch-Henriksen, N., Munksgaard, L., Storm, H. H., and Melbye, M. 2004. Familial clustering of Hodgkin lymphoma and multiple sclerosis. J. Natl. Cancer Inst. 96:780–784.PubMedCrossRefGoogle Scholar
  47. Hjalmars, U., Kulldorff, M., Gustafsson, G., and Nagarwalla, N. 1996. Childhood leukaemia in Sweden: using GIS and a spatial scan statistic for cluster detection. Stat. Med. 15:707–715.PubMedCrossRefGoogle Scholar
  48. Houben, M. P., Coebergh, J. W., Birch, J. M., Tijssen, C. C., van Duijn, C. M., and McNally, R. J. 2005. Space-time clustering patterns of gliomas in The Netherlands suggest an infectious aetiology. Eur. J. Cancer 41:2917–2923.PubMedCrossRefGoogle Scholar
  49. Houben, M. P., Coebergh, J. W., Birch, J. M., Tijssen, C. C., van Duijn, C. M., and McNally, R. J. 2006. Space-time clustering of glioma cannot be attributed to specific histological subgroups. Eur. J. Epidemiol. 21:197–201.PubMedCrossRefGoogle Scholar
  50. Jacquez, G. M. 1996. A k nearest neighbour test for space-time interaction. Stat. Med. 15:1935–1949.PubMedCrossRefGoogle Scholar
  51. Jarrett R. F. 2006. Viruses and lymphoma/leukaemia. J. Pathol. 208:176–186.PubMedCrossRefGoogle Scholar
  52. Jasani, B., Cristaudo, A., Emri, S. A., Gazdar, A. F., Gibbs, A., Krynska, B., Miller, C., Mutti, L., Radu, C., Tognon, M., and Procopio, A. 2001. Association of SV40 with human tumours. Semin. Cancer Biol. 11:49–61.PubMedCrossRefGoogle Scholar
  53. Kannagi, M., Ohashi, T., Harashima, N., Hanabuchi, S., and Hasegawa, A. 2004. Immunological risks of adult T-cell leukemia at primary HTLV-I infection. Trends Microbiol. 12:346–352.PubMedCrossRefGoogle Scholar
  54. Kinlen, L. 1988. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet 2:1323–1327.PubMedCrossRefGoogle Scholar
  55. Kinlen, L. J., Clarke, K., and Hudson, C. 1990. Evidence from population mixing in British new towns 1946–85 of an infective basis for childhood leukaemia. Lancet 336:577–582.PubMedCrossRefGoogle Scholar
  56. Kinlen, L. J., O’Brien, F., Clarke, K., Balkwill, A., and Matthews, F. 1993. Rural population mixing and childhood leukaemia: effects of the North Sea oil industry in Scotland, including the area near Dounreay nuclear site. Br. Med. J. 306:743–748.CrossRefGoogle Scholar
  57. Kinlen, L. J., and John, S. M. 1994. Wartime evacuation and mortality from childhood leukaemia in England and Wales in 1945–49. Br. Med. J. 309:1197–1202.CrossRefGoogle Scholar
  58. Kinlen, L. J. 1995. Epidemiological evidence for an infective basis in childhood leukaemia. Br. J. Cancer 71:1–5.PubMedCrossRefGoogle Scholar
  59. Kinlen, L., and Doll, R. 2004. Population mixing and childhood leukaemia: Fallon and other US clusters. Br. J. Cancer 91:1–3.PubMedCrossRefGoogle Scholar
  60. Klauber, M. R., and Mustacchi, P. 1970. Space-time clustering of childhood leukemia in San Francisco. Cancer Res. 30:1969–1973.PubMedGoogle Scholar
  61. Knox, E. G. 1964. The detection of space-time interactions. Appl. Stat. 13:25–29.CrossRefGoogle Scholar
  62. Knox, E. G., and Gilman, E. 1992. Leukaemia clusters in Great Britain. 2. Geographical concentrations. J. Epidemiol. Community Health 46:573–576.PubMedCrossRefGoogle Scholar
  63. Knox, E. G., and Gilman, E. A. 1996. Spatial clustering of childhood cancers in Great Britain. J. Epidemiol. Community Health 50:313–319.PubMedCrossRefGoogle Scholar
  64. Kulldorff, M., and Nagarwalla, N. 1995. Spatial disease clusters: detection and inference. Stat. Med. 14:799–810.PubMedCrossRefGoogle Scholar
  65. Kulldorff, M. 1997. A spatial scan statistic. Commun. Stat. – Theory Meth. 26:1481–1496.CrossRefGoogle Scholar
  66. Kulldorff, M., Athas, W. F., Feurer, E. J., Miller, B. A., and Key, C. R. 1998. Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am. J. Public Health 88:1377–1380.PubMedCrossRefGoogle Scholar
  67. Kulldorff, M., and Hjalmars, U. 1999. The Knox method and other tests for space-time interaction. Biometrics 55:544–552.PubMedCrossRefGoogle Scholar
  68. Kulldorff, M., Heffernan, R., Hartman, J., Assuncao, R., and Mostashari, F. 2005. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2:e59.PubMedCrossRefGoogle Scholar
  69. Kulldorff, M., Information Management Services, Inc. 2006. SaTScanTM v7.0: Software for the spatial and space-time scan statistics.
  70. Larsen, R. J., Holmes, C. L., and Heath, C. W. 1973. A statistical test for measuring unimodal clustering: a description of the test and of its application to case of acute leukemia in metropolitan Atlanta, Georgia. Biometrics 29:301–309.PubMedCrossRefGoogle Scholar
  71. Linenberger, M. L., and Abkowitz, J. L. 1995. Haematological disorders associated with feline retrovirus infections. Baillieres Clin. Haematol. 8:73–112.PubMedCrossRefGoogle Scholar
  72. Linet, M. S., Gridley, G., Cnattingius, S., Nicholson, H. S., Martinsson, U., Glimelius, B., Adami, H. O., and Zack, M. 1996. Maternal and perinatal risk factors for childhood brain tumors (Sweden). Cancer Causes Control 7:437–448.PubMedCrossRefGoogle Scholar
  73. Little, J. 1999. Epidemiology of Childhood Cancer. Lyon: International Agency for Research on Cancer, Publ. no. 149.Google Scholar
  74. Mainwaring, D. 1966. Epidemiology of acute leukaemia of childhood in the Liverpool area. Br. J. Prev. Soc. Med. 20:189–194.PubMedGoogle Scholar
  75. Mangoud, A., Hillier, V. F., Leck, I., and Thomas, R. W. 1985. Space-time interaction in Hodgkin’s disease in Greater Manchester. J. Epidemiol. Community Health 39:58–62.PubMedCrossRefGoogle Scholar
  76. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209–220.PubMedGoogle Scholar
  77. McElvenny, D. M., Darnton, A. J., Hodgson, J. T., Clarke, S. D., Elliott, R. C., and Osman, J. 2003. Investigation of cancer incidence and mortality at a Scottish semiconductor manufacturing facility. Occup. Med. (Lond). 53:419–430.CrossRefGoogle Scholar
  78. McNally, R. J., Alexander, F. E., and Birch, J. M. 2002a. Space-time clustering analyses of childhood acute lymphoblastic leukaemia by immunophenotype. Br. J. Cancer 87:513–515.PubMedCrossRefGoogle Scholar
  79. McNally, R. J., Cairns, D. P., Eden, O. B., Alexander, F. E., Taylor, G. M., Kelsey, A. M., and Birch, J. M. 2002b. An infectious aetiology for childhood brain tumours? Evidence from space-time clustering and seasonality analyses. Br. J. Cancer 86:1070–1077.PubMedCrossRefGoogle Scholar
  80. McNally, R. J., Kelsey, A. M., Eden, O. B., Alexander, F. E., Cairns, D. P., and Birch, J. M. 2003a. Space-time clustering patterns in childhood solid tumours other than central nervous system tumours. Int. J. Cancer 103:253–258.PubMedCrossRefGoogle Scholar
  81. McNally, R. J., Alston, R. D., Cairns, D. P., Eden, O. B., and Birch, J. M. 2003b. Geographical and ecological analyses of childhood acute leukaemias and lymphomas in North-West England. Br. J. Haematol. 123:60–65.PubMedCrossRefGoogle Scholar
  82. McNally, R. J., Alston, R. D., Cairns, D. P., Eden, O. B., Kelsey, A. M., and Birch, J. M. 2003c. Geographical and ecological analyses of childhood Wilms’ tumours and soft-tissue sarcomas in North West England. Eur. J. Cancer 39:1586–1593.PubMedCrossRefGoogle Scholar
  83. McNally, R. J., and Eden, T. O. 2004. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br. J. Haematol. 127:243–263.PubMedCrossRefGoogle Scholar
  84. McNally, R. J., Alexander, F. E., Eden, O. B., and Birch, J. M. 2004. Little or no space-time clustering found amongst cases of childhood lymphoma in North West England. Eur. J. Cancer 40:585–589.PubMedCrossRefGoogle Scholar
  85. McNally, R. J., Eden, T. O., Alexander, F.E., Kelsey, A. M., and Birch, J. M. 2005. Is there a common aetiology for certain childhood malignancies? Results of cross-space-time clustering analyses. Eur. J. Cancer 41:2911–2916.PubMedCrossRefGoogle Scholar
  86. McNally, R. J., Alexander, F. E., and Bithell, J. F. 2006a. Space-time clustering of childhood cancer in Great Britain: a national study, 1969–1993. Int. J. Cancer 118:2840–2846.PubMedCrossRefGoogle Scholar
  87. McNally, R. J., Pearce, M. S., and Parker, L. 2006b. Space-time clustering analyses of testicular cancer amongst 15–24-year-olds in Northern England. Eur. J. Epidemiol. 21:139–144.PubMedCrossRefGoogle Scholar
  88. McNally, R. J., Bithell, J. F., Vincent, T. J., and Murphy, M. F. 2009a. Space-time clustering of childhood cancer around the residence at birth. Int. J. Cancer 124:449–455.PubMedCrossRefGoogle Scholar
  89. McNally, R. J., Alexander, F. E., Vincent, T. J., and Murphy, M. F. 2009b. Spatial clustering of childhood cancer in Great Britain during the period 1969–1993. Int. J. Cancer 124:932–936.PubMedCrossRefGoogle Scholar
  90. Meighan, S. S., and Knox, G. 1965. Leukaemia in childhood: epidemiology in Oregon. Cancer 18:811–814.PubMedCrossRefGoogle Scholar
  91. Meliker, J. R., and Jacquez, G. M. 2007. Space-time clustering of case-control data with residential histories: insights into empirical induction periods, age-specific susceptibility, and calendar year-specific effects. Stoch. Environ. Res. Risk Assess. 21:625–634.PubMedCrossRefGoogle Scholar
  92. Morris, V. 1990. Space-time interactions in childhood cancers. J. Epidemiol. Community Health 44:55–58.PubMedCrossRefGoogle Scholar
  93. Mueller, N. 1995. Overview: viral agents and cancer. Environ. Health Perspect. 103(Suppl 8):259–261.PubMedCrossRefGoogle Scholar
  94. Muirhead, C. R., and Ball, A. M. 1989. Contribution to the discussion at the Royal Statistical Society meeting on cancer near nuclear establishments. J. R. Stat. Soc A 152:376.Google Scholar
  95. Neutra, R. R. 1990. Counterpoint from a cluster buster. Am. J. Epidemiol. 132:1–8.PubMedGoogle Scholar
  96. Nevins, J. R. 2005. Cell transformation by viruses. In: Knipe, D. M., Howley, P. M., Griffin, D. E., Lamb, R. A., Martin, M. A., Roizman, B., and Straus, S., editors. Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins.Google Scholar
  97. Penrose, M. 1970. Cat leukaemia. Br. Med. J. 1:755.PubMedCrossRefGoogle Scholar
  98. Petridou, E., Revinthi, K., Alexander, F. E., Haidas, S., Koliouskas, D., Kosmidis, H., Piperopoulou, F., Tzortzatou, F., and Trichopoulos, D. 1996. Space-time clustering of childhood leukaemia in Greece: evidence supporting a viral aetiology. Br. J. Cancer 73:1278–1283.PubMedCrossRefGoogle Scholar
  99. Petridou, E., Alexander, F. E., Trichopoulos, D., Revinthi, K., Dessypris, N., Wray, N., Haidas, S., Koliouskas, D., Kosmidis, H., Piperopoulou, F., and Tzortzatou, F. 1997. Aggregation of childhood leukemia in geographic areas of Greece. Cancer Causes Control 8:239–245.PubMedCrossRefGoogle Scholar
  100. Pinkel, D., and Nefzger, D. 1959. Some epidemiological features of childhood leukemia in the Buffalo, NY area. Cancer 12:351–358.PubMedCrossRefGoogle Scholar
  101. Pinkel, D., Dowd, J. E., and Bross, I. D. 1963. Some epidemiological features of malignant solid tumors of children in the Buffalo, NY area. Cancer 16:28–33.CrossRefGoogle Scholar
  102. Pike, M. C., and Smith, P. G. 1974. Case-control approach to examine diseases for evidence of contagion, including disease with long latent periods. Biometrics 30:263–279.PubMedCrossRefGoogle Scholar
  103. Potthoff, R. F., and Whittinghill, M. 1966. Testing for homogeneity: II. The Poisson distribution. Biometrika 53:183–190.PubMedGoogle Scholar
  104. Rothman, K. J. 1990. A sobering start for the cluster busters’ conference. Am. J. Epidemiol. 132(Suppl 1):S6–S13.PubMedGoogle Scholar
  105. Schwartz, S. O., Greenspan, I., and Brown, E. R. 1963. Leukemic clusters in Niles, ILL. Immunologic data on families of leukemic patients and others. JAMA 186;106–108.PubMedCrossRefGoogle Scholar
  106. Shaw, A. K., Li, P., and Infante-Rivard, C. 2006. Early infection and risk of childhood brain tumors (Canada). Cancer Causes Control 17:1267–1274.PubMedCrossRefGoogle Scholar
  107. Smith, P. G., Pike, M. C., Till, M. M., and Hardisty, R. M. 1976. Epidemiology of childhood leukaemia in Greater London: a search for evidence of transmission assuming a possibly long latent period. Br. J. Cancer 33:1–8.PubMedCrossRefGoogle Scholar
  108. Smith, M. 1997. Considerations on a possible viral etiology for B-precursor acute lymphoblastic leukemia of childhood. J. Immunother. 20:89–100.PubMedCrossRefGoogle Scholar
  109. Steinmaus, C., Lu, M., Todd, R. L., and Smith, A. H. 2004. Probability estimates for the unique childhood leukemia cluster in Fallon, Nevada, and risks near other US military aviation facilities. Environ. Health Perspect. 112:766–771.PubMedCrossRefGoogle Scholar
  110. Viejo-Borbolla, A., and Schulz, T. F. 2003. Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8): key aspects of epidemiology and pathogenesis. AIDS Rev. 5:222–229.PubMedGoogle Scholar
  111. Walter, S. D., and Elwood, J. M. 1975. A test for seasonality of events with a variable population at risk. Br. J. Prevent. Soc. Med. 29:18–21.Google Scholar
  112. Westerbeek, R. M., Blair, V., Eden, O. B., Kelsey, A. M., Stevens, R. F., Will, A. M., Taylor, G. M., and Birch, J. M. 1998. Seasonal variations in the onset of childhood leukaemia and lymphoma. Br. J. Cancer 78:119–124.PubMedCrossRefGoogle Scholar
  113. Williams, J. R., Alexander, F. E., Cartwright, R. A., and McNally, R. J. 2001. Methods for eliciting aetiological clues from geographically clustered cases of disease, with application to leukaemia-lymphoma data. J. R. Stat. Soc. A 164:49–60.CrossRefGoogle Scholar
  114. Young, L. S., and Rickinson, A. B. 2004. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4:757–768.PubMedCrossRefGoogle Scholar
  115. Zahalkova, M., Bilek, O., Kubikova, A., and Belusa, M. 1970. The incidence of leukaemias in children and their clustering in space and time in South Moravian Province, Czechoslovakia. Blut 21:180–185.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+ Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Health and Society, Newcastle UniversityNewcastle upon TyneUK

Personalised recommendations