Advertisement

Betel Nut and Susceptibility to Cancer

  • Rajesh N. SharanEmail author
  • Yashmin Choudhury
Chapter

Abstract

Betel nut is a widely masticated natural product, which is consumed by over 600 million people across the globe. The ancient habit of betel nut chewing, either as dry or raw/wet nut, in association with betel leaf and a host of region specific additives, including chewing tobacco, is believed to be an important etiological factor for human cancer. Alkaloids and their betel nut specific nitrosamine derivatives produced upon metabolic activation interact with DNA and other cellular targets to produce highly variable mutagenic, genotoxic, cytostatic, immunostatic and teratogenic effects. At molecular level the betel nut or its constituents strongly influence gene expression patterns, especially that of tumor suppressor genes. Structural damage to nucleus and mitochondria, etc. are also induced. The review dwells upon these aspects of betel nut induced carcinogenesis to show that genetic susceptibility to cancer through generations progressively increased due to exposure to betel nut.

Keywords

Betel nut specific nitrosamine derivatives and alkaloids Mutagenic and genotoxic effects Tumor suppressor genes Susceptibility to oral cancer 

Notes

Acknowledgments

RNS acknowledges contributions of all research associates and scholars whose work has been cited in this review. Grants of UGC, CSIR, DST and ICMR, which supported different aspects of research embodied in this chapter, are also acknowledged. Part of the ongoing research is being carried out under a research scheme partly funded by the UPE-NEHU grant. YC was supported by a fellowship (NET-JRF/SRF) from the UGC and is currently working as a Lecturer, Department of Biotechnology, Assam University, Silchar, 788 011, India.

References

  1. Balachandran, B., Sharan, R. N. 1995. Induction of mutations by different extracts of betel nut and radiation: Their implication in carcinogenesis. In Radiation Research 1895–1995, eds. U. Hagen, H. Jung, and C. Streffer, pp 165, vol. 1, Würzburg: Universitätsdruckerei H. Stürtz AG.Google Scholar
  2. Bartsch, H., Hietanen, E. 1996. The role of individual susceptibility in cancer burden related to environmental exposure. Environ Health Perspect 104:569–577.PubMedGoogle Scholar
  3. Bhattacharjee, C., Sharan, R. N. 2008. Aqueous extract of betel nut (AEBN) induced adducts on pMTa4 DNA acquires stability in the presence of Na+ and K+ ions. Mol. Med. Rep. 1:435–441.Google Scholar
  4. Boucher, B. J., Mannan, N. 2002. Metabolic effects of the consumption of Areca catechu. Addict. Biol. 7:103–110.PubMedCrossRefGoogle Scholar
  5. Chang, M. C., Ho, Y. S., Lee, P. H., Chan, C. P., Lee, J. J., Hahn, L. J., Wang, Y. J., Jeng, J. H. 2001d. Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis 22:1527–1535.PubMedCrossRefGoogle Scholar
  6. Chang, Y. C., Hu, C. C., Lii, C. K., Tai, K. W., Yang, S. H., Chou, M. Y. 2001b. Cytotoxicity and arecoline mechanisms in human gingival fibroblasts in vitro. Clin. Oral Investig. 5:51–56.PubMedCrossRefGoogle Scholar
  7. Chang, Y. C., Hu, C. C., Tseng, T. H., Tai, K. W., Lii, C. K., Chou, M. Y. 2001a. Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts. J. Oral Pathol. Med. 30:458–464.PubMedCrossRefGoogle Scholar
  8. Chang, B., Liao, M., Kuo, M. Y., Chen, C. 2001c. Developmental toxicity of arecoline, the major alkaloid in betel nuts, in zebrafish embryos. Birth Defects Res. 70:28–36.CrossRefGoogle Scholar
  9. Chang, M. C., Wu, H. L., Lee, J. J., Lee, P. H., Chang, H. H., Hahn, L. J., Lin, B. R., Chen, Y. J., Jeng, J. H. 2004. The induction of prostaglandin E2 production, interleukin-6 production, cell cycle arrest, and cytotoxicity in primary oral keratinocytes and KB cancer cells by areca nut ingredients is differentially regulated by MEK/ERK activation. J Biol Chem 279:50676–50683.PubMedCrossRefGoogle Scholar
  10. Chen, C. L., Chi, C. W., Chang, K. W., Liu, T. Y. 1999. Safrole-like DNA adducts in oral tissue from oral cancer patients with a betel quid chewing history. Carcinogenesis 20:2331–2334.PubMedCrossRefGoogle Scholar
  11. Chiang, C., Chang, M., Lee, J., Chang, J. Y., Lee, P., Hahn, L., Jeng, J. 2004. Hamsters chewing betel quid or areca nut directly show a decrease in body weight and survival rates with concomitant epithelial hyperplasia of cheek pouch. Oral Oncol. 40:720–727.PubMedCrossRefGoogle Scholar
  12. Chiang, S., Jiang, S., Wang, Y., Chiang, H., Chen, P., Tu, H., Ho, K., Tsai, Y., Chang, I., Ko, Y. 2007. Characterization of arecoline-induced effects on cytotoxicity in normal human gingival fibroblasts by global gene expression profiling. Toxicol Sci 100:66–74.PubMedCrossRefGoogle Scholar
  13. Chiba, I., Muthumala, M., Yamazaki, Y., Zaman, A. U., Iizuka, T., Amemiya, A., Shibata, T., Kashiwazaki, H., Sugiura, C., Fukuda, H. 1998. Characteristics of mutations in the p53 gene of oral squamous-cell carcinomas associated with betel-quid chewing in Sri Lanka. Int J Cancer 77:839–842.PubMedCrossRefGoogle Scholar
  14. Chiu, C. J., Chang, C. P., Hahn, L. J., Hsieh, L. L., Chen, C. J. 2002. Interaction of collagen-related genes and susceptibility to betel quid-induced oral submucous fibrosis. Cancer Epidemiol. Biomarkers. Prev. 11:646–653.PubMedGoogle Scholar
  15. Chiu, C. J., Chiang, C. P., Chang, M. L., Chen, H. M., Hahn, L. J., Hsieh, L. L., Kuo, Y. S., Chen, C. J. 2001. Association between genetic polymorphism of tumor necrosis factor-alpha and risk of oral submucous fibrosis, a pre-cancerous condition of oral cancer. J. Dent. Res. 80:2055–2059.PubMedCrossRefGoogle Scholar
  16. Choudhury, Y., Sharan, R. N. 2009. Altered p53 response and enhanced transgenerational transmission of carcinogenic risk upon exposure of mice to betel nut. Environ. Toxicol. Pharmacol. 27:127–138.Google Scholar
  17. Choudhury, Y., Sharan, R. N. 2010. Altered BRCA1 and BRCA2 response and mutation of BRCA1 gene m mice exposed chronically and transgenerationally to aqueous extract of betel nut. Environ. Toxicol. Pharmacol. (in communication)Google Scholar
  18. Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W., Lin, Y. 1998. Tannins and human health: a review. Crit. Rev. Food Sci. Nutr. 38:421–464.PubMedCrossRefGoogle Scholar
  19. Cressman, V. L., Backlund, D. C., Avrutskaya, A., Leadon, S. A., Godfrey, V., Koller, B. H. 1999. Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol Cell Biol 19:7061–7075.PubMedGoogle Scholar
  20. Deb, S., Chatterjee, A. 1998. Influence of buthionine sulfoximine and reduced glutathione on arecoline-induced chromosomal damage and sister chromatid exchange in mouse bone marrow cells in vivo. Mutagenesis 13:243–248.PubMedCrossRefGoogle Scholar
  21. Deng, J. F., Ger, J., Tsai, W. J., Kao, W. F., Yang, C. C. 2001. Acute toxicities of betel nut: rare but probably overlooked events. J Toxicol Clin Toxicol 39:355–360.PubMedCrossRefGoogle Scholar
  22. Desai, S. S., Ghaisas, S. D., Jakhi, S. D., Bhide, S. V. 1996. Cytogenetic damage in exfoliated oral mucosal cells and circulating lymphocytes of patients suffering from precancerous oral lesions. Cancer Lett. 109:9–14.PubMedCrossRefGoogle Scholar
  23. Goan, Y. G., Chang, H. C., Hsu, H. K., Chou, Y. P., Cheng, J. T. 2005. Risk of p53 gene mutation in esophageal squamous cell carcinoma and habit of betel quid chewing in Taiwanese. Cancer Sci. 96:758–765.PubMedCrossRefGoogle Scholar
  24. Harris, C. C., Hollstein, M. 1993. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329:1318–1327.PubMedCrossRefGoogle Scholar
  25. Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C. C. 1991. P53 mutation in human cancer. Science 253:49–53.PubMedCrossRefGoogle Scholar
  26. Hsieh, L. L., Wang, P. F., Chen, I. H., Liao, C. T., Wang, H. M., Chen, M. C., Chang, J. T., Cheng, A. J. 2001. Characterisics of mutations of the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis 22:1497–1503.PubMedCrossRefGoogle Scholar
  27. Hsu, H. J., Chang, K. L., Yang, Y. H., Shieh, T. Y. 2001. The effects of arecoline on the release of cytokines using cultured peripheral blood mononuclear cells from patients with oral mucous diseases. Kaohsiung J Med Sci 17:175–182.PubMedGoogle Scholar
  28. Hung, S., Cheng, Y., Peng, J., Chang, L., Liu, T., Chen, Y. 2005. Inhibitory effects of areca nut extracts on phagocytosis of Actinobacillus actinomycetemcomitans ATCC 33384 by neutrophils. J. Periodontol. 76:373–379.PubMedCrossRefGoogle Scholar
  29. IARC. 1985. International Agency for Research on Cancer (IARC) – Tobacco habits other than smoking: Betel quid and Areca-nut chewing and some related nitrosamines. IARC Monogr Eval Carcinog Risks Hum 37:263, Lyon: IARC.Google Scholar
  30. IARC. 2004. International Agency for Research on Cancer (IARC) – Summaries & Evaluations: Betel-quid and areca-nut chewing. IARC Monogr Eval Carcinog Risk Chem Hum 85:39, Lyon: IARC.Google Scholar
  31. Jeng, J. H., Chang, M. C., Hahn, L. J. 2001. Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol. 37:477–492.PubMedCrossRefGoogle Scholar
  32. Jeng, J. H., Kuo, M. L., Hahn, L. J., Kuo, M. Y. 1994. Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J. Dental Res. 73:1043–1049.Google Scholar
  33. Jeng, J. H., Lan, W. H., Hahn, L. J., Hsieh, C. C., Kuo, M. Y. 1996. Inhibition of the migration, attachment, spreading, growth and collagen synthesis of human gingival fibroblasts by arecoline, a major areca alkaloid, in vitro. J. Oral Pathol. Med. 25:371–375.PubMedCrossRefGoogle Scholar
  34. Jeng, J. H., Tsai, C. L., Hahn, L. J., Yang, P. J., Kuo, Y. S., Kuo, M. Y. 1999. Arecoline cytotoxicity on human oral mucosal fibroblasts related to cellular thiol and esterase activities. Food Chem Toxicol 37:751–756.PubMedCrossRefGoogle Scholar
  35. Jeng, J. H., Wang, Y. J., Chiang, B. L., Lee, P. H., Chan, C. P., Ho, Y. S., Wang, T. M., Lee, J. J., Hahn, L. J., Chang, M. C. 2003. Roles of keratinocyte inflammation in oral cancer: regulating the prostaglandin E2, interleukin-6 and TNF-α production of oral epithelial cells by areca nut extract and arecoline. Carcinogenesis 24:1301–1315.PubMedCrossRefGoogle Scholar
  36. Kannan, K., Munirajan, A. K., Krishnamurthy, J. 1999. Low incidence of p53 mutation in betel quid and tobacco chewing-associated oral squamous carcinoma from India. Int J Oncol 15:1133–1136.PubMedGoogle Scholar
  37. Kao, S. Y., Wu, H. C., Lin, S. C., Yap, S. K., Chang, C. S., Wong, Y. K., Chi, L. Y., Liu, T. Y. 2002. Genetic polymorphism of cytochrome P4501A1 and susceptibility to oral squamous cell carcinoma and oral precancer lesions associated with smoking/betel use. J. Oral Pathol. Med. 31:505–511.PubMedCrossRefGoogle Scholar
  38. Kato, K., Hara, A., Kuno, T., Kitaori, N., Huilan, Z., Mori, H., Toida, M., Shibata, T. 2005. Matrix metalloproteinases 2 and 9 in oral squamous cell carcinomas: manifestation and localization of their activity. J. Cancer Res. Clin. Oncol. 131:340–346.PubMedCrossRefGoogle Scholar
  39. Kietthubthew, S., Sriplung, H., Au, W. W. 2001. Genetic and environmental interactions on oral cancer in Southern Thailand. Environ Mol Mutagen 37:111–116.PubMedCrossRefGoogle Scholar
  40. Kinzler, K. W., Vogelstein, B. 1997. Gatekeeprs and caretakers. Nature 386:761–763.PubMedCrossRefGoogle Scholar
  41. Kumpawat, K., Deb, S., Ray, S., Chatterjee, A. 2003. Genotoxic effect of raw betel-nut extract in relation to endogenous glutathione levels and its mechanism of action in mammalian cells. Mutat Res 538:1–12.PubMedCrossRefGoogle Scholar
  42. Kuttan, N. A. A., Rosin, M. P., Ambika, K., Priddy, R. W., Bhakthan, N. M. G., Zhang, L. 1995. High prevalence of expression of p53 oncoprotein in oral carcinomas from India associated with betel and tobacco chewing. Eur J Cancer 31:169–173.Google Scholar
  43. Lai, K., Lee, T. 2006. Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts. Mutat. Res. Fundam. Mol. Mech. Mutag. 599:66–75.CrossRefGoogle Scholar
  44. Lane, D. P. 1992. Cancer: p53 guardian of the genome. Nature 358:15–16.PubMedCrossRefGoogle Scholar
  45. Lee, P., Chang, M., Chang, W., Wang, T., Wang, Y., Hahn, L., Ho, Y., Lin, C., Jeng, J. 2006. Prolonged exposure to arecoline arrested human KB epithelial cell growth: Regulatory mechanisms of cell cycle and apoptosis. Toxicology 220:81–89.PubMedCrossRefGoogle Scholar
  46. Lee, H., Yin, P., Yu, T., Chang, Y., Hsu, W., Kao, S., Chi, C., Liu, T., Wei, Y. 2001. Accumulation of mitochondrial DNA deletions in human oral tissues — effects of betel quid chewing and oral cancer. Mutat. Res. Genetic Toxicol. Environ. Mutagen. 493:67–74.CrossRefGoogle Scholar
  47. Levine, A. J. 1997. P53, the cellular gatekeeper for growth and division. Cell 88:323–331.PubMedCrossRefGoogle Scholar
  48. Lin, Y., Jen, Y., Wang, B., Lee, J., Kang, B. 2005. Epidemiology of oral cavity cancer in Taiwan with emphasis on the role of betel nut chewing. ORL J. Otorhinolaryngol. Relat. Spec. 67:230–236.PubMedCrossRefGoogle Scholar
  49. Lin, S. C., Liu, C. J., Yeh, W. I., Lui, M. T., Chang, K. W., Chang, C. S. 2006. Functional polymorphism in NFKB1 promoter is related to risks of oral squamous cell carcinoma occurring on older male areca (betel) chewers. Cancer Lett. 243:47–54.PubMedCrossRefGoogle Scholar
  50. Liu, T., Chen, C., Chi, C. 1996. Oxidative damage to DNA induced by areca nut extract. Mutat. Res. Genetic Toxicol. 367:5–31.Google Scholar
  51. Liu, T. Y., Chi, C. W. 1999. Areca nut extracts stimulate DNA strand breaks by generation of nitric oxide. Toxicol Lett 95:112.CrossRefGoogle Scholar
  52. Liu, T. Y., Chung, Y. T., Wang, P. F., Chi, C. W., Hsieh, L. L. 2004. Safrole-DNA adducts in human peripheral blood—an association with areca quid chewing and CYP2E1 polymorphisms. Mutat. Res. Genetic Toxicol. Environ. Mutagen. 559:59–66.CrossRefGoogle Scholar
  53. Liu, S. Y., Lin, M. H., Yang, S. C., Huang, G. C., Chang, L., Chang, S., Yen, C. Y., Chiang, W. F., Kuo, Y. Y., Chen, L. L., Lee, C. H., Liu, Y. C. 2005a. Increased expression of matrix metalloproteinase-2 in oral cells after short-term stimulation and long-term usage of areca quid. J. Formos. Med. Assoc. 104:390–397.PubMedGoogle Scholar
  54. Liu, S. Y., Lin, M. H., Yang, S. C., Huang, G. C., Chang, L., Chang, S., Yen, C. Y., Chiang, W. F., Lee, C. H., Kuo, Y. Y., Liu, Y. C. 2005b. Areca quid chewing enhances the expression of salivary matrix metalloproteinase-9. J. Formos. Med. Assoc. 104:113–119.PubMedGoogle Scholar
  55. Lu, S., Chang, K., Liu, C., Tseng, Y., Lu, H., Lee, S., Lin, S. 2006. Ripe areca nut extract induces G1 phase arrests and senescence-associated phenotypes in normal human oral keratinocyte. Carcinogenesis 27:1273–1284.PubMedCrossRefGoogle Scholar
  56. Nadeau, G., Boufaied, N., Moisan, A., Lemieux, K. M., Cayanan, C., Monteiro, A. N. A., Gaudreau, L. 2000. BRCA1 can stimulate gene transcription by a unique mechanism. EMBO Rep. 3:260–265.CrossRefGoogle Scholar
  57. Nair, U., Bartsch, H., Nair, J. 2004. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis 19:251–262.PubMedCrossRefGoogle Scholar
  58. Nair, U., Floyd, R. A., Nair, J., Bussachini, V., Friesen, M., Bartsch, H. 1987. Formation of reactive oxygen species and of 8-hydroxydeoxyguanosine in DNA in vitro with betel quid ingredients. Chem Biol Interact 63:157–169.PubMedCrossRefGoogle Scholar
  59. Nair, U. J., Nair, J., Mathew, B., Bartsch, H. 1999. Glutathione S-transferase M1 and T1 null genotypes as risk factors for oral leukoplakia in ethnic Indian betel quid/ tobacco chewers. Carcinogenesis 20:743–748.PubMedCrossRefGoogle Scholar
  60. Nair, J., Ohshima, H., Friesen, M., Croisy, A., Bhide, S. V., Bartsch, H. 1985. Tobacco-specific and betel nut-specific N-nitroso compounds: occurrence in saliva and urine of betel quid chewers and formation in vitro by nitrosation of betel quid. Carcinogenesis 6:295–303.PubMedCrossRefGoogle Scholar
  61. Norton, S. A. 1998. Betel: consumption and consequences. J Am Acad Dermatol 38:81–88.PubMedCrossRefGoogle Scholar
  62. Panigrahi, G. B., Rao, A. R. 1989. Study of the genotoxicity of the total aqueous extract of betel nut and its tannin. Carcinogenesis 7:37–39.CrossRefGoogle Scholar
  63. Pariat, T., Balachandran, B., Sharan, R. N. 1999. Effects of carcinogen exposure on poly-ADP-ribosylation of HMG Proteins and on chromatin organization. In Recent Aspects of Cellular and Applied Radiobiology, eds. F. H. A. Schneeweiss and R. N. Sharan, pp 158–161, vol. 30, International co-operation bilateral seminars series, Juelich: Forschungszentrum Juelich GmbH.Google Scholar
  64. Pariat, T., Sharan, R. N. 1998a. Betel nut and diethylnitrosamine induced conformational changes in the liver HMG proteins in vivo. In Trends in Radiation and Cancer Biology, ed. R. N. Sharan, pp 162–165, vol. 29, International co-operation bilateral seminars series, Juelich: Forschungszentrum Juelich GmbH.Google Scholar
  65. Pariat, T., Sharan, R. N. 1998b. Qualitative change in mice liver HMG proteins after low dose chronic administration of aqueous extract of betel nut and diethynitrosamine. Hepatol Res 12:177–185.CrossRefGoogle Scholar
  66. Pariat, T., Sharan, R. N. 2002. Role of mouse spleen cell HMG proteins and its poly-ADP-ribosylation in betel nut induced carcinogenesis. Indian J Biochem Biophys 39:130–132.PubMedGoogle Scholar
  67. Patel, B. P., Shah, S. V., Shukla, S. N., Shah, P. M., Patel, P. S. 2007. Clinical significance of MMP-2 and MMP-9 in patients with oral cancer. Head Neck 29:564–572.PubMedCrossRefGoogle Scholar
  68. Paul, K., Moitra, P. K., Mukherjee, I., Maity, C., Ghosal, S. K. 1999. Teratogenicity of arecoline hydrobromide on developing chick embryos: A preliminary report. Bull Environ Contam Toxicol 62:356–362.PubMedCrossRefGoogle Scholar
  69. Polasa, K., Babu, S., Shenolikar, I. S. 1993. Dose-dependent genotoxic effect of pan masala and areca nut in Salmonella typhimurium assay. Food Chem Toxicol 31:439–442.PubMedCrossRefGoogle Scholar
  70. Rajan, J. V., Wang, M., Marquis, S. T., Chodosh, L. A. 1996. Brca2 is coordinately regulated with Brca1 during proliferation and differentiation in mammary epithelial cells. Proc. Natl. Acad. Sci. (USA) 93:13078–13083.CrossRefGoogle Scholar
  71. Ralhan, R., Agarwal, S., Nath, N., Mathur, M., Wasylyk, B., Srivastava, A. 2001. Correlation between p53 gene mutations and circulating antibodies in betel- and tobacco-consuming North Indian population. Oral Oncol. 37:243–250.PubMedCrossRefGoogle Scholar
  72. Ramachandran, S., Ramadas, K., Hariharan, R., Rejnish, K. R., Radhakrishna, P. M. 2006. Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer. Oral Oncol. 42:350–362.PubMedCrossRefGoogle Scholar
  73. Ranasinghe, A. W., Warnakulasuriya, K. A. A. S., Johnson, N. W. 1993. Low prevalence of expression of p53 oncoprotein in oral carcinomas from Sri Lanka associated with betel and tobacco chewing. Eur J Cancer 29:147–150.CrossRefGoogle Scholar
  74. Saikia, J. R., Schneeweiss, F. H. A., Sharan, R. N. 1998. Effects of chronic low-dose arecoline administration on the macromolecular components of bone marrow and spleen cells of mice. Cancer J. 11:94–98.Google Scholar
  75. Saikia, J. R., Schneeweiss, F. H. A., Sharan, R. N. 1999a. Chronic low dose arecoline exposure affects DNA, RNA and protein contents and cellular poly-ADP-ribosylation in mice in vivo. In Recent Aspects of Cellular and Applied Radiobiology, eds. F. H. A. Schneeweiss, and R. N. Sharan, pp 149–152, vol. 30, International co-operation bilateral seminars series, Juelich: Forschungszentrum Juelich GmbH.Google Scholar
  76. Saikia, J. R., Schneeweiss, F. H. A., Sharan, R. N. 1999b. Arecoline-induced changes of poly-ADP-ribosylation of cellular proteins and its influence on chromatin organization. Cancer Lett. 139:59–65.PubMedCrossRefGoogle Scholar
  77. Sharan, R. N. 1994. Biochemical investigation of carcinogenic potency of betel nut (Kwai) of north-east India. In, Oral Oncology, pp. 190–193, vol. III, New Delhi: Mac Millan India Ltd.Google Scholar
  78. Sharan, R. N. 1996. Association of betel nut with carcinogenesis – A review. Cancer J. 9:13–19.Google Scholar
  79. Sharan, R. N., Wary, K. K. 1992. Study of unscheduled DNA synthesis following exposure of human cells to arecoline and extracts of betel nut in vitro. Mutat Res 278:271–276.PubMedCrossRefGoogle Scholar
  80. Shwe, M., Chiguchi, G., Yamada, S., Nakajima, T., Maung, K. K., Takagi, M., Amagasa, T., Tsuchida, N. 2001. P53 and MDM2 co-expression in tobacco and betel chewing-associated oral squamous cell carcinomas. J. Med. Dent. Sci. 48:113–119.PubMedGoogle Scholar
  81. Sinha, A., Rao, A. R. 1985a. Embryotoxicity of betel nuts in mice. Toxicol. 37:315–326.CrossRefGoogle Scholar
  82. Sinha, A., Rao, A. R. 1985b. Induction of shape abnormality and unscheduled DNA synthesis by arecoline in the germ cells of mice. Mutat Res 158:189–192.PubMedCrossRefGoogle Scholar
  83. Sinha, A., Rao, A. R. 1985c. Transplacental micronucleus inducing ability of arecoline, a betel nut alkaloid in mice. Mutat Res 158:193–194.PubMedCrossRefGoogle Scholar
  84. Spitz, M. R., Bondy, M. L. 1993. Genetic susceptibility to cancer. Cancer. 72:991–995.PubMedCrossRefGoogle Scholar
  85. Stich, H. F., Anders, F. 1989. The involvement of reactive oxygen species in oral cancers of betel quid/tobacco chewers. Mutat Res 214:47–61.PubMedCrossRefGoogle Scholar
  86. Sundqvist, K., Liu, Y., Nair, J., Bartsch, H., Arvidson, K., Grafström, R. C. 1989. Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res 49:5294–5298.PubMedGoogle Scholar
  87. Thomas, S., Brennan, J., Martel, G. 1994. Mutations in the conserved regions of p53 are infrequent in betel-associated oral cancers from Papua New Guinea. Cancer Res 54:3588–3593.PubMedGoogle Scholar
  88. Topcu, Z., Chiba, I., Fujieda, M., Shibata, T., Ariyoshi, N., Yamazaki, H., Sevgican, F., Muthumala, M., Kobayahi, H., Kamataki, T. 2002. CYP2A6 gene deletion reduces oral cancer risk in betel quid chewers in Sri Lanka. Carcinogenesis 23:595–598.PubMedCrossRefGoogle Scholar
  89. Trivedy, C. R., Craig, G., Warnakulasuriya, S. 2002. The oral health consequences of chewing areca nut. Addict. Biol. 7:115–125.PubMedCrossRefGoogle Scholar
  90. Tseng, C. 2006. Betel nut chewing is independently associated with urinary albumin excretion rate in type 2 diabetic patients. Diabetes Care 29:462–463.PubMedCrossRefGoogle Scholar
  91. Tu, H. F., Liu, C. J., Chang, C. S., Lui, M. T., Kao, S. Y., Chang, C. P., Liu, T. Y. 2006. The functional (-1171 5A→>6A) polymorphisms of matrix metalloproteinase 3 gene as a risk factor for oral submucous fibrosis among male areca users. J. Oral Pathol. Med. 35:99–103.PubMedCrossRefGoogle Scholar
  92. Tu, H. F., Wu, C. H., Kao, S. Y., Liu, C. J., Liu, T. Y., Lui, M. T. 2007. Functional-1562 C-to-T polymorphism in matrix metalloproteinase-9 (MMP-9) promoter is associated with the risk for oral squamous cell carcinoma in younger male areca users. J. Oral Pathol. Med. 36:409–414.PubMedCrossRefGoogle Scholar
  93. Wang, C. K., Peng, C. H. 1996. The mutagenicities of alkaloids and N-nitrosoguvacoline from betel quid. Mutat Res Environ Mutagen Relat Subj 360:165–171.CrossRefGoogle Scholar
  94. Warnakulasuriya, S. 2002. Areca nut use: an independent risk factor for oral cancer. Br. Med. J. 324:799–800.CrossRefGoogle Scholar
  95. Wary, K. K., Sharan, R. N. 1988. Aqueous extract of betel-nut of North-East India induces DNA strand breaks and enhances rate of cell proliferation in vitro. J. Cancer Res. Clin. Oncol 114:579–582.PubMedCrossRefGoogle Scholar
  96. Wary, K. K., Sharan, R. N. 1991. Cytotoxic and cytostatic effects of arecoline and sodium nitrite on human cells in vitro. Int J Cancer 47:396–400.PubMedCrossRefGoogle Scholar
  97. Wen, X., Zhang, Y., Liu, X., Guo, S., Wang, H. 2006. Immune responses in mice to arecoline mediated by lymphocyte muscarinic acetylcholine receptor. Cell Biol. Int. 30:1048–1053.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+ Business Media, LLC 2010

Authors and Affiliations

  1. 1.Radiation and Molecular Biology Unit, Department of BiochemistryNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations