Advertisement

Exposure to Environmental Mutagens: APC and Colorectal Carcinogenesis

  • Aruna S. Jaiswal
  • Melissa L. Armas
  • Shahnjayla K. Connors
  • Harekrushna Panda
  • Satya NarayanEmail author
Chapter

Abstract

Environmental mutagens are global health hazards and a major risk factor for colon cancer development. Environmental mutagens include a variety of genotoxic carcinogenic compounds including polycyclic aromatic hydrocarbons, heterocyclic amines, nitrosamines, and aromatic amines. Their sources are pollution, diet, alcohol and cigarette smoke. These mutagens come in contact with large bowel through blood circulation or direct ingestion. Once these mutagens are in contact with DNA of the gut epithelial cells, they form DNA-adducts. If the damage exceeds the repair capacity of the epithelial cells, then the persistence of mutations can lead to the transformation of these cells. Mutations in adenomatous polyposis coli (APC) gene is considered to be one of the earliest events in the genesis of colorectal cancer, and its role has been well documented in a broad spectrum of functions ranging from cell adhesion to cell migration, regulation of Wnt/β-catenin-signaling pathway, cell cycle control, apoptosis, and chromosomal segregation at mitosis. The contribution of environmental mutagens on the APC gene mutations is very scanty in the literature. In the past several years, we have initiated studies to examine the interaction of APC with pathways induced by environmental mutagens. We showed that APC can be transcriptionally upregulated after DNA damage subsequent to the exposure of environmental mutagens including cigarette smoking. In addition, we recently discovered a novel role of APC in base excision repair (BER) pathway. APC interacts with DNA polymerase β and Fen-1 and blocks Pol-β-directed BER. Thus, APC-mediated block of BER in response to environmental mutagens, especially the DNA-alkylating agents, can be detrimental to the cell.

Keywords

Environmental mutagens DNA damage Adenomatous polyposis coli DNA repair Colorectal carcinogenesis 

Notes

Acknowledgments

The work from our laboratory cited in this review was financially supported to Satya Narayan by NIH-grants (R01-CA097031 and R01-CA100247) and Flight Attendant Medical Research Institute, Miami, FL. We thank to Mary Wall for proofreading of the manuscript.

References

  1. Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. 1997. β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16: 3797–3804.PubMedCrossRefGoogle Scholar
  2. Ahmed, F. E. 2004. Effects of life style, and other environmental/chemopreventative factors on colorectal cancer development and assessment of the risks. J. Environ. Sci. Health C 22: 91–147.Google Scholar
  3. Alexandrov, K., Rojas, M., Kadlubaer, F. F., Lang, N. P., and Bartsch, H. 1996. Evidence of anti-benzo[a]pyrene diolepoxide-DNA adduct formation in human colon mucosa. Carcinogenesis 17: 2081–2083.PubMedCrossRefGoogle Scholar
  4. Al Tassan, N., Chmiel, N. H., Maynard, J., Fleming, N., Livingston, A. L., Williams, G. T., Hodges, A. K., Davies, D. R., David, S. S., Sampson, J. R., and Cheadle, J. P. 2002. Inherited variation of Mut Y associated with somatic G:C->T:A mutations in colorectal tumors. Nat. Genet. 30: 227–232.PubMedCrossRefGoogle Scholar
  5. American Cancer Society. 2007a. Cigarette smoking. prevention & early detection. http://www.cancer.org/docroot/PED/content/
  6. American Cancer Society. 2007b. What are the key statistics for colorectal cancer? http://www.cancer.org/docroot/CRI/content/
  7. American Cancer Society. 2007c. What are the risk factors for colorectal cancer? http://www.cancer.org/docroot/CRI/content/
  8. Baker, S. J., Fearon, E. R., Nigro, J. M., Hamilton, S. R., Preisinger, A. C., Jessup, J. M., van Tuinen, P., Ledbetter, D. H., Barker, D. F., Nakamura, Y., White, R., and Vogelstein, B. 1989. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244: 217–221.PubMedCrossRefGoogle Scholar
  9. Balusu, R., Jaiswal, A. S., Armas, M. L., Kundu, C. N., Bloom, L. B., and Narayan, S. Structure/function Analysis of the Interaction of Adenomatous Polyposis Coli (APC) with DNA Polymerase β and its Implications for Base Excision Repair. Biochemistry 2007 Nov 14; 2007 Nov 14; [Epub ahead of print] PMID: 17999539.Google Scholar
  10. Belobrajdic, D. P., McIntosh, G. H., and Owens, J. A. 2003. Whey proteins protect more than red meat against azoxymethane-induced ACF in Wistar rats. Cancer Lett. 198: 45–51.CrossRefGoogle Scholar
  11. Benjamin, H., Storkson, J., Nagahara, A., and Pariza, M. W. 1991. Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by dietary soy sauce. Cancer Res. 51: 2940–2942.PubMedGoogle Scholar
  12. Ben-Ze’ev, A., and Geiger, B. 1998. Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. Curr. Opin. Cell Biol. 10: 629–639.PubMedCrossRefGoogle Scholar
  13. Beroud, C., and Soussi, T. 1996. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 24: 121–124.PubMedCrossRefGoogle Scholar
  14. Bieskalski, H. K. 2002. Meat and cancer: meat as a component of a healthy diet. Eur. J. Clin. Nutr. 56(suppl): S2–S11.CrossRefGoogle Scholar
  15. Bodmer, W. F., Bailey, C. J., Bodmer, J., Bussey, H. J., Ellis, A., Gorman, P., Lucibello, F. C., Murday, V. A., Rider, S. H., Scambler, P., Sheer, D., Solomon, E., and Spurr, N. K. 1987. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328: 614–616.PubMedCrossRefGoogle Scholar
  16. Bos, J. L. 1988. The ras gene family and human carcinogenesis. Mutat. Res. 195: 255–271.PubMedCrossRefGoogle Scholar
  17. Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-de Vries, M., van Boom, J. H., van der Eb, A. J., and Vogelstein, B. 1987. Prevalence of ras mutations in human colorectal cancers. Nature 327: 293–297.PubMedCrossRefGoogle Scholar
  18. Burkitt, D. P. 1969. Related disease, related cause? Lancet 2: 1229–1231.PubMedCrossRefGoogle Scholar
  19. Counts, J., and Goodman, J. 1995. Alternation in DNA methylation may play a variety of roles in carcinogenesis. Cell 83: 13–15.PubMedCrossRefGoogle Scholar
  20. Culp, S. J., Gaylor, D. W., Sheldon, W. G., Goldstein, L. S., and Beland, F. A. 1998. A comparison of the tumors induced by coal tar and benzo[a]pyrene in 2 year bioassay. Carcinogenesis 19: 117–124.PubMedCrossRefGoogle Scholar
  21. De la Fuente, M. K., Alvarez, K. P., Letelier, A. J., Bellolio, F., Acuña, M. L., León, F. S., Pinto, E., Carvallo, P., and López-Köstner, F. 2007. Mutational screening of the APC gene in Chilean families with familial adenomatous polyposis: nine novel truncating mutations. Dis. Colon Rectum. 50: 2142–2148.PubMedCrossRefGoogle Scholar
  22. Doll, R., Gray, R., Hafner, B., and Peto, R. 1980. Mortality in relation to smoking: 22 years’ observations on female British doctors. Br. Med. J. 280: 967–971.PubMedCrossRefGoogle Scholar
  23. Doll, R., and Peto, R. 1976. Mortality in relation to smoking: 20 years’observations on male British doctors. Br. Med. J. 2: 1525–1536.PubMedCrossRefGoogle Scholar
  24. Erdmann, K. S., Kuhlmann, J., Lessmann, V., Herrmann, L., Eulenburg, V., Muller, O., and Heumann, R. 2000. The Adenomatous polyposis coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Oncogene 19: 3894–3901.PubMedCrossRefGoogle Scholar
  25. Fearnhead, N. S., Britton, M. P., and Bodmer, W. F. 2001. The ABC of APC. Hum. Mol. Genet. 10: 721–733.PubMedCrossRefGoogle Scholar
  26. Fearon, E. R. 1993. Molecular genetics studies of the adenoma-carcinoma sequence. Adv. Intern. Med. 39: 123–147.Google Scholar
  27. Fearon, E. R., Cho, K. R., Nigro, J. M., Kern, S. E., Simons, J. W., Ruppert, J. M., Hamilton, S. R., Preisinger, A. C., Thomas, G., Kinzler, K. W., and Vogelstein, B. 1990. Identification of a chromosome 18q gene that is altered in colorectal cancer. Science 247: 49–56.PubMedCrossRefGoogle Scholar
  28. Fearon, E. R., and Vogelstein, B. 1990. A genetic model for colorectal tumorigenesis. Cell 61: 759–767.PubMedCrossRefGoogle Scholar
  29. Flammang, T. J., Couch, L. H., and Levy, G. N. 1992. DNA-adduct levels in congenic rapid and slow acetylator mouse strains following chronic administration of 4-aminobiphenyl. Carcinogenesis 13: 1887–1891.PubMedCrossRefGoogle Scholar
  30. Forrester, K., Almoguera, C., Han, K., Grizzle, W. E., and Perucho, M. 1987. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327: 298–303.PubMedCrossRefGoogle Scholar
  31. Frayling, I. M., Beck, N. E., Ilyas, M., Dove-Edwin, I., Goodman, P., Pack, K., Bell, J. A., Williams, C. B., Hodgson, S. V., Thomas, H. J., Talbot, I. C., Bodmer, W. F., and Tomlinson, I. P. 1998. The APC variants I1307K and E1317Q are associated with colorectal tumors, but not always with a family history. Proc. Natl. Acad. Sci. U.S.A. 95: 10722–10727.PubMedCrossRefGoogle Scholar
  32. Friedl, W., and Aretz, S. 2005. Familial adenomatous polyposis: Expression from a study of 1164 unrelated german polyposis patients. Hered. Cancer Clin. Pract. 3: 95–114.PubMedCrossRefGoogle Scholar
  33. Gertig, D. M., and Hunter, D. J. 1998. Genes and environment in the etiology of colorectal cancer. Semin. Cancer Biol. 8: 285–298.PubMedCrossRefGoogle Scholar
  34. Giovannucci, E. 2001. An updated review of epidemiological evidence that cigarette smoking increased risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 10: 725–731.PubMedGoogle Scholar
  35. Giovannucci, E. 2003. Diet, body weight, and colorectal cancer: a summary of the epidemiologic evidence. J. Womens Health (Larchmt) 12: 173–182.CrossRefGoogle Scholar
  36. Giovannucci, E., and Martinez, M. E. 1996. Tobacco, colorectal cancer, and adenomas: a review of the evidence. J. Natl. Cancer Inst. 88: 1717–1730.PubMedCrossRefGoogle Scholar
  37. Giovannucci, E., Rimm, E. B., Stampfer, M. J., Colditz, G. A., Ascherio, A., Kearney, J., and Willett, W. C. 1994a. A prospective study of cigarette smoking and risk of colorectal adenoma and colorectal cancer in U.S. women. J. Natl. Cancer Inst. 86: 183–191.PubMedCrossRefGoogle Scholar
  38. Giovannucci, E., Rimm, E. B., Stampfer, M. J., Colditz, G. A., Ascherio, A., and Willet, W. C. 1994b. Intake of fat, meat, and fiber in relatioln to risk of colon cancer in men. Cancer Res. 54: 2390–2397.PubMedGoogle Scholar
  39. Goldman, R., and Shields, P. G. 2003. Food mutagens. J. Nutr. 133: 965S–973S.PubMedGoogle Scholar
  40. Groden, J., Thliveris, A., Samowitz, W., Carlson, M., Gelbert, L., Albertsen, H., Joslyn, G., Stevens, J., Spirio, L., Robertson, M., Sargeant, L., Krapcho, K., Wolff, E., Burt, R., Hughes, J. P., Warrington, J., McPherson, J., Wasmuth, J., Paslier, D. L., Abderrahim, H., Cohen, D., Leppert, M., and White, R. 1991. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66: 589–600.PubMedCrossRefGoogle Scholar
  41. Hamada, F., and Bienz, M. 2002. A Drosophila APC tumour suppressor homologue functions in cellular adhesion. Nat. Cell Biol. 4: 208–213.PubMedCrossRefGoogle Scholar
  42. Hamilton, S. R. 1993. The molecular genetics of colorectal neoplasia. Gastroenterology 105: 3–7.PubMedGoogle Scholar
  43. Hammond, E. C. 1966. Smoking in relation to the death rates of one million men and women. Natl. Cancer Inst. Monogr. 19: 127–204.PubMedGoogle Scholar
  44. Hammond, E. C., and Horn, D. 1958. Smoking and death rates: report on forty-four months of follow-up of 187,783 men. II. Death rate by cause. J. Am. Med. Assoc. 166: 1294–1308.CrossRefGoogle Scholar
  45. Hardman, E. E., and Cameron, I. L. 1995. Site-specific reduction of colon cancer incidence, without a concomitant reduction in cryptal cell proliferation in 1,2-dimethylhydrazine-treated rats by diets containing 10% pectin with 5% or 20% corn oil. Carcinogenesis 16: 1425–1431.PubMedCrossRefGoogle Scholar
  46. Harris, C. C. 1991. Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res. 51: 5023S–5044S.PubMedGoogle Scholar
  47. Hatzfeld, M. 1999. The armadillo family of structural proteins. Int. Rev. Cytol. 186: 179–224.PubMedCrossRefGoogle Scholar
  48. Heavey, P. M., McKenna, D., and Rowland, I. R. 2004. Colorectal cancer and the relationship between genes and the environment. Nutr. Cancer 48: 124–141.PubMedCrossRefGoogle Scholar
  49. Hedrick, L., Cho, K. R., Fearon, E. R., Wu, T. C., Kinzler, K. W., and Vogelstein, B. 1994. The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev. 8: 1174–1183.PubMedCrossRefGoogle Scholar
  50. Henderson, B. R. 2000. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nat. Cell Biol. 2: 653–660.PubMedCrossRefGoogle Scholar
  51. Henderson, B. R., and Fagotto, F. 2002. The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep. 3: 834–839.PubMedCrossRefGoogle Scholar
  52. Hockenbery, D., Nuñez, G., Milliman, C., Schreiber, R. D. ,and, and Korsmeyer, S. J. 1990. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336.PubMedCrossRefGoogle Scholar
  53. Hoffman, D., and Hoffman, I. 1997. The changing cigarette, 1950–1995. J. Toxicol. Environ. Health 50: 307–364.CrossRefGoogle Scholar
  54. Hoffmann, D., Hoffmann, I., and El-Bayoumy, K. 2001. The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem. Res. Toxicol. 14: 768–790.CrossRefGoogle Scholar
  55. Homfray, T. F., Cottrell, S. E., Ilyas, M., Rowan, A., Talbot, I. C., Bodmer, W. F., and Tomlinson, I. P. 1998. Defects in mismatch repair occur after APC mutations in the pathogenesis of sporadic colorectal tumours. Hum. Mutat. 11: 114–120.PubMedCrossRefGoogle Scholar
  56. Horii, A., Nakatsuru, S., Ichii, S., Nagase, H., and Nakamura, Y. 1993. Multiple forms of the APC gene transcripts and their tissue-specific expression. Hum. Mol. Genet. 2: 283–286.PubMedCrossRefGoogle Scholar
  57. Hsu, W., Zeng, L., and Costantini, F. 1999. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J. Biol. Chem. 274: 3439–3445.PubMedCrossRefGoogle Scholar
  58. Hughes, R., Cross, A. J., Polluck, J. R., and Bingham, S. 2001. Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 22: 199–202.PubMedCrossRefGoogle Scholar
  59. Hwang, E., and Bowen, P. E. 2007. DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet and environment. Crit. Rev. Food Sci. Nutr. 47: 27–50.PubMedCrossRefGoogle Scholar
  60. International Agency for Research on Cancer. 1986. Tobacco Smoking. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 38: 1–397.Google Scholar
  61. International Agency for Research on Cancer. 2004. Tobacco Smoke. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 83: 1005–1187.Google Scholar
  62. Ishibe, N., and Freedman, A. N. 2001. Understanding the interaction between environmental exposures and molecular events in colorectal carcinogenesis. Environ. Carcinogenesis 19: 524–539.Google Scholar
  63. Ito, N., Hasegawa, R., Sano, M., Tamano, S., Esumi, H., Takayama, S., and Sugimura, T. 1991. A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis 12: 1503–1506.PubMedCrossRefGoogle Scholar
  64. Jacobs, E. J., Connell, C. J., Patel, A. V., Chao, A., Rodriguez, C., Seymour, J., McCullough, M. L., Calle, E. E., and Thun, M. J. 2001. Vitamin C and vitamin E supplement use and colorectal cancer mortality in large American Cancer Society cohort. Cancer Epidemiol. Biomarkers Prev. 10: 17–23.PubMedGoogle Scholar
  65. Jaiswal, A. S., Balusu, R., Armas, M. L., Kundu, C. N., and Narayan, S. 2006. Mechanism of adenomatous polyposis coli (APC)-mediated blockage of long-patch base excision repair. Biochemistry 45: 15903–15914.PubMedCrossRefGoogle Scholar
  66. Jaiswal, A. S., Balusu, R., and Narayan, S. 2005. Involvement of adenomatous polyposis coli in colorectal tumorigenesis. Front. Biosci. 10: 1118–1134.PubMedCrossRefGoogle Scholar
  67. Jaiswal, A. S., and Narayan, S. 2001a. Upstream stimulating factor-1 (USF1) and USF2 bind to and activate the promoter of adenomatous polyposis coli (APC) tumor suppressor gene. J. Cell Biochem. 81: 262–277.PubMedCrossRefGoogle Scholar
  68. Jaiswal, A. S., and Narayan, S. 2001b. p53-dependent transcriptional regulation of the APC promoter in colon cancer cells treated with DNA alkylating agents. J. Biol. Chem. 276: 18193–18199.PubMedCrossRefGoogle Scholar
  69. Janssen, K. P., Alberici, P., Fsihi, H., Gaspar, C., Breukel, C., Franken, P., Rosty, C., Abal, M., El Marjou, F., Smits, R., Louvard, D., Fodde, R., and Robine, S. 2006. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 131: 1096–1109.PubMedCrossRefGoogle Scholar
  70. Jimbo, T., Kawasaki, Y., Koyama, R., Sato, R., Takada, S., Haraguchi, K., and Akiyama, T. 2002. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat. Cell Biol. 4: 323–327.PubMedCrossRefGoogle Scholar
  71. Jones, S., Emmerson, P., Maynard, J., Best, J. M., Jordan, S., Williams, G. T., Sampson, J. R., and Cheadle, J. P. 2002. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C→ T:A mutations. Hum. Mol. Genet. 11: 2961–2967.PubMedCrossRefGoogle Scholar
  72. Kahn, H. A. 1966. The Dorn study of smoking and mortality among U.S. veterans: report on eight and one-half years of observation. Natl. Cancer Inst. Monogr. 19: 1–125.PubMedGoogle Scholar
  73. Kapitanovic, S., Radosevic, S., Kapitanovic, M., Andelinovic, S., Ferencic, Z., Tavassoli, M., Primorac, D., Sonicki, Z., Spaventi, S., Pavelic, K., and Spaventi, R. 1997. The expression of p185 (HER-2/neu) correlates with the stage of disease and survival in colorectal cancer. Gastroenterology 112: 1103–1113.PubMedCrossRefGoogle Scholar
  74. Kinzler, K. W., Nilbert, M. C., Su, L., Vogelstein, B., Bryan, T. M., Levy, D. B., Smith, K. J., Preisinger, A. C., Hedge, P., McKechnie, D., Finniear, R., Markham, A., Groffen, J., Boguski, M. S., Altschul, S. F., Horii, A., Ando, H., Miyoshi, Y., Miki, Y., Nishisho, I., and Nakamura, Y. 1991. Identification of FAP locus genes from chromosome 5q21. Science 253: 661–664.PubMedCrossRefGoogle Scholar
  75. Knudson, A. G., Jr. 1971. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. U.S.A. 68: 820–823.PubMedCrossRefGoogle Scholar
  76. Korinek, W. S., Copeland, M. S., Chaudhuri, A., and Chant, J. 2000. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287: 2257–2259.PubMedCrossRefGoogle Scholar
  77. Kundu, C. N., Balusu, R., Jaiswal, A. S., Gariola, C. G., and Narayan, S. 2007b. Cigarette Smoke condensate-induced level of adenomatous polyposis coli blocks long-patch base excision repair in breast epithelial cells. Oncogene 26: 1428–1438.PubMedCrossRefGoogle Scholar
  78. Kundu, C. N., Balusu, R., Jaiswal, A. S., and Narayan, S. 2007a. Adenomatous polyposis coli-mediated hypersensitivity of mouse embryonic fibroblast cell lines to methylmethane sulfonate treatment: implication of base excision repair pathways. Carcinogenesis 28: 2089–2095.PubMedCrossRefGoogle Scholar
  79. Kune, G. A., Kune, S., Vitetta, L., and Watson, L. F. 1992. Smoking and colorectal cancer risk: data from the Melbourne Colorectal Cancer Study and brief review of literature. Int. J. Cancer 50: 369–372.PubMedCrossRefGoogle Scholar
  80. Kune, G. A., and Viterra, L. 1992. Alcohol consumption and the etiology of colorectal cancer: a review of the scientific evidence from 1957–1991. Nutr. Cancer 18: 97–111.PubMedCrossRefGoogle Scholar
  81. Laken, S. J., Petersen, G. M., Gruber, S. B., Oddoux, C., Ostrer, H., Giardiello, F. M., Hamilton, S. R., Hampel, H., Markowitz, A., Klimstra, D., Jhanwar, S., Winawer, S., Offit, K., Luce, M. C., Kinzler, K. W., and Vogelstein, B. 1997. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat. Genet. 17: 79–83.PubMedCrossRefGoogle Scholar
  82. Lamlum, H., Ilyas, M., Rowan, A., Clark, S., Johnson, V., Bell, J., Frayling, I., Efstathiou, J., Pack, K., Payne, S., Roylance, R., Gorman, P., Sheer, D., Neale, K., Phillips, R., Talbot, I., Bodmer, W. F., and Tomlinson, I. 1999. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ‘two-hit’ hypothesis. Nat. Med. 5: 1071–1075.PubMedCrossRefGoogle Scholar
  83. Lane, D. P. 1992. p53, guardian of the genome. Nature 358: 15–16.PubMedCrossRefGoogle Scholar
  84. Liberman, E., Kraus, S., Sagiv, E., Dulkart, O., Kazanov, D., and Arber, N. 2007. The APC E1317Q and I1307K polymorphisms in non-colorectal cancers. Biomed. Pharmacother. 61: 566–569.PubMedCrossRefGoogle Scholar
  85. Lioy, P. J., and Greenberg, A. 1990. Factors associated with human exposures to polycyclic aromatic hydrocarbons. Toxicol. Ind. Health 6: 209–223.PubMedGoogle Scholar
  86. Lipkin, M., Reddy, B., Newmark, H., and Lamprecht, S. A. 1999. Dietary factors in human colorectal cancer. Annu. Rev. Nutr. 19: 545–586.PubMedCrossRefGoogle Scholar
  87. Locker, G. Y., Kaul, K., Weinberg, D. S., Gatalica, Z., Gong, G., Peterman, A., Lynch, J., Klatzco, L., Olopade, O. I., Bomzer, C. A., Newlin, A., Keenan, E., Tajuddin, M., Knezetic, J., Coronel, S., and Lynch, H. T. 2006. The I1307K APC polymorphism in Ashkenazi Jews with colorectal cancer: clinical and pathologic features. Cancer Genet. Cytogenet. 169: 33–38.PubMedCrossRefGoogle Scholar
  88. Locker, G. Y., and Lynch, H. T. 2004. Genetic factors and colorectal cancer in Ashkenazi Jews. Fam Cancer. 3: 215–221.PubMedCrossRefGoogle Scholar
  89. Lund, E. K., Wharf, S. G., Fairweather-Tait, S. J., and Johnson, I. T. 1999. Oral ferrous sulfate supplements increase the free radical-generating capacity of feces from healthy volunteers. Am. J. Clin. Nutr. 69: 250–255.PubMedGoogle Scholar
  90. Manabe, S., Tohyama, K., Wada, O., and Aramaki, T. 1991. Detection of a carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine(PhIP) in cigarette smoke condensate. Carcinogenesis 12: 1945–1947.PubMedCrossRefGoogle Scholar
  91. Mason, J. B., and Choi, S. W. 2005. Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 35: 235–241.PubMedCrossRefGoogle Scholar
  92. Matsumine, A., Ogai, A., Senda, T., Okumura, N., Satoh, K., Baeg, G. H., Kawahara, T., Kobayashi, S., Okada, M., Toyoshima, K., and Akiyama, T. 1996. Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 272: 1020–1023.PubMedCrossRefGoogle Scholar
  93. McDonnell, T. J., Deane, N., Platt, F. M., Nunez, G., Jaeger, U., McKearn, J. P., and Korsmeyer, S. J. 1989. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57: 79–88.PubMedCrossRefGoogle Scholar
  94. Mirvish, S. S., Haorah, J., Zhou, L., Hartman, M., Morris, C. R., and Clapper, M. L. 2003. N-nitrosocompounds in the gastrointestinal tract of rats and in the feces of mice with induced colitis or fed hot dogs or beef. Carcinogenesis 24: 595–603.PubMedCrossRefGoogle Scholar
  95. Miyoshi, Y., Nagase, H., Ando, H., Ichii, S., Nakatsura, S., Aoki, T., Miki, Y., Mori, T., and Nakamura, Y. 1992. Somatic mutations of the APC gene in colorectal tumors: Mutation cluster region in the APC gene. Hum. Mol. Genet. 1: 229–233.PubMedCrossRefGoogle Scholar
  96. Mori, T., Imaida, K., Tamon, S., Sano, M., Takahashi, S., Asamoto, M., Takeshita, M., Ueda, H., and Shirai, T. 2001. Beef tallow, but not perilla or corn oil, promotion of rate prostate via intestinal carcinogenesis by 3, 2′-diethyl-4-aminobiphenyl. Jpn. J. Cancer Res. 92: 1026–1033.PubMedCrossRefGoogle Scholar
  97. Mucci, L. A., Wedren, S., Tamami, R. M., Trichopoulos, D., and Adami, H. O. 2001. The role of gene-environment interactions in the etiology of human cancer: examples from cancer of the large bowel, lung and breast. J. Intern. Med. 249: 477–493.PubMedCrossRefGoogle Scholar
  98. Muto, T., Bussey, H. J., and Morson, B. C. 1975. The evolution of cancer of the colon and rectum. Cancer 36: 2251–2270.PubMedCrossRefGoogle Scholar
  99. Naccarati, A., Pardini, P., Hemminki, K., and Pavel, V. 2007. Sporadic colorectal cancer and individual susceptibility: A review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat. Res. 635: 118–145.PubMedCrossRefGoogle Scholar
  100. Nakamura, Y. 1993. The role of the adenomatous polyposis coli (APC) gene in human cancers. Adv. Cancer Res. 62: 65–87.PubMedCrossRefGoogle Scholar
  101. Narayan, S., and Jaiswal, A. S. 1997. Activation of Adenomatous Polyposis Coli (APC) Gene Expression by the DNA-alkylating agent N-Methyl-N’-nitro-N-nitrosoguanidine requires p53. J. Biol. Chem. 272: 30619–30622.PubMedCrossRefGoogle Scholar
  102. Narayan, S., Jaiswal, A. S., and Balusu, R. 2005. Tumor suppressor APC blocks DNA polymerase β-dependent strand displacement synthesis during long patch but not short patch base excision repair and increases sensitivity to methylmethane sulfonate. J. Biol. Chem. 280: 6942–6949.PubMedCrossRefGoogle Scholar
  103. Narayan, S., and Roy, D. 2003. Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol. Cancer. 2: 41–56.PubMedCrossRefGoogle Scholar
  104. National Cancer Institute. 2007. What you need to know about colon and rectal cancer: Risk Factors. http://www.cancer.gov/cancertopics/wyntk/colon-and-rectal/page4
  105. Neufeld, K. L., Nix, D. A., Bogerd, H., Kang, Y., Beckerle, M. C., Cullen, B. R., and White, R. L. 2000. Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 97: 12085–12090.PubMedCrossRefGoogle Scholar
  106. Nigro, N. D., Bull, A. W., Klopfer, B. A., Pak, M. S., and Campbell, R. L. 1979. Effect of dietary fiber on azoxymethane-induced intestinal carcinogenesis in rats. J. Natl. Cancer Inst. 62: 1097–1102.PubMedGoogle Scholar
  107. Nishikawa, A., Mori, Y., Lee, I. S., Tanaka, T., and Hirose, M. 2004. Cigarette smoking metabolic activation and carcinogenesis. Curr.Drug Metabol. 5: 363–373.CrossRefGoogle Scholar
  108. Nishisho, I., Nakamura, Y., Miyoshi, Y., Miki, H., Ando, A., Horii, K., Koyama, J., Utsunomiya, S., Baba, S., and Hedge, P. 1991. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253: 665–669.PubMedCrossRefGoogle Scholar
  109. Nohmi, T., and Masumura, K. 2005. Molecular nature of intrachromosomal deletions and base substitutions induced by environmental mutagens. Environ. Mol. Mutag. 45: 150–161.CrossRefGoogle Scholar
  110. Norat, T., and Riboli, E. 2001. Meat consumption and colorectal cancer: a review of epidemiologic evidence. Nutr. Rev. 59: 37–47.PubMedCrossRefGoogle Scholar
  111. Ohgaki, H., Takahama, J. R., and Sugimura, T. 1991. Carcinogenicities of heterocyclic amines in cooked food. Mutat. Res. 259: 399–410.PubMedCrossRefGoogle Scholar
  112. Orford, K., Crockett, C., Jensen, J. P., Weissman, A. M., and Byers, S. W. 1997. Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J. Biol. Chem. 272: 24735–24738.PubMedCrossRefGoogle Scholar
  113. Parnaud, G., and Corpet, D. E. 1997. Colorectal cancer: controversial role of meat consumption. Bull. Cancer 84: 899–911.PubMedGoogle Scholar
  114. Paz-Elizur, T., Brenner, D. E., and Livneh, Z. 2005. Interrogating DNA repair in cancer risk assessment. Cancer Epidemiol. Biomarkers Prev. 14: 1585–1587.PubMedCrossRefGoogle Scholar
  115. Peifer, M. S., Berg, S., and Reynolds, A. B. 1994. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76: 789–791.PubMedCrossRefGoogle Scholar
  116. Perera, F. P. 1997. Environment and cancer: who are susceptible? Science 278: 1068–1073.PubMedCrossRefGoogle Scholar
  117. Pierre, F., Tache, S., Petit, C. R., Meer, R. V., and Corpet, D. E. 2003. Meat and cancer: hemoglobin and haemin in a low-calcium diet promote colorectal carcinogenesis at the aberrant crypt stated in rats. Carcinogenesis 24: 1683–1690.PubMedCrossRefGoogle Scholar
  118. Polakis, P. 1997. The adenomatous polyposis coli (APC) tumor suppressor. Biochim. Biophys. Acta 1332: F127–F147.PubMedGoogle Scholar
  119. Povey, A. C., Badawi, A. F., Cooper, D. P., Hall, N., Harrison, K. L., Jackson, P. E., Lees, N. P., O’Connor, P. J., and Margison, G. P. 2002. DNA alkylation and repair in the large bowel: Animal and human studies. J. Nutr. 132: 3518S–3521S.PubMedGoogle Scholar
  120. Powell, S. M., Zilz, N., Beazer-Barclay, Y., Bryan, T. M., Hamilton, S. R., Thibodeau, S. N., Vogelstein, B., and Kinzler, K. W. 1992. APC mutations occur early during colorectal tumorigenesis. Nature 359: 235–237.PubMedCrossRefGoogle Scholar
  121. Probst-Hensch, N. M., Sinha, R., Longnecker, M. P., Wittle, J. S., Ingles, S. A., Frankl, H. D., Lee, E. R., and Haile, R. W. 1997. Meat preparation and colorectal adenomas in a large sigmoidscopy-based case-control study in California (United States). Cancer Caused Control 8: 175–183.CrossRefGoogle Scholar
  122. Rogot, E., and Murray, J. L. 1980. Smoking and causes of death among U.S. veterans: 16 years of observation. Public Health Rep. 95: 213–222.PubMedGoogle Scholar
  123. Rothman, N., Correa-Villasenor, A., Ford, D. P., Poirier, M. C., Haas, R., Hansen, J. A., Rowan, A. J., Lamlum, H., Ilyas, M., Wheeler, J., Straub, J., Papadopoulou, A., Bicknell, D., Bodmer, W. F., and Tomlinson, I. P. 2000. APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc. Natl. Acad. Sci. U.S.A. 97: 3352–3357.CrossRefGoogle Scholar
  124. Rothman, N., Poirier, M. C., Baser, M. E., Hansen, J. A., Gentile, C., Bowman, E. D., and Strickland, P. T. 1990. Formation of polycyclic hydrocarbon-DNA adducts in peripheral white blood cells during consumption of charcoal-broiled beef. Carcinogenesis 11: 1241–1243.PubMedCrossRefGoogle Scholar
  125. Rowan, A. J., Lamlum, H., Ilyas, M., Wheeler, J., Straub, J., Papadopoulou, A., Bicknell, D., Bodmer, W. F., and Tomlinson, I. P. 2000. APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc. Natl. Acad. Sci. U.S.A. 97: 3352–3357.PubMedCrossRefGoogle Scholar
  126. Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S., and Polakis, P. 1996. Binding of GSK3 to the APC-beta-catenin complex and regulation of complex assembly. Science 272: 1023–1026.PubMedCrossRefGoogle Scholar
  127. Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S. C., Masiarz, F., Munemitsu, S., and Polakis, P. 1993. Association of the APC gene product with catenin. Science 262: 1731–1734.PubMedCrossRefGoogle Scholar
  128. Sampson, J. R., Jones, S., Dolwani, S., and Cheadle, J. P. 2005. Mut YH (MYH) and colorectal cancer. Biochem. Soc. Trans. 33: 679–683.PubMedCrossRefGoogle Scholar
  129. Sanders, L. M., Henderson, C. E., Mee, Y. H., Barhoumi, R., Burghardt, R. C., Carroll, R. J., Turner, N. D., Chapkin, R. S., and Lupton, J. R. 2004. Pro-oxidant environment of the colon compared to the small intestine may contribute to greater cancer susceptibility. Cancer Lett. 208: 155–161.PubMedCrossRefGoogle Scholar
  130. Schafmayer, C., Buch, S., Egberts, J. H., Franke, A., Brosch, M., El Sharawy, A., Conring, M., Koschnick, M., Schwiedernoch, S., Katalinic, A., Kremer, B., Fölsch, U. R., Krawczak, M., Fändrich, F., Schreiber, S., Tepel, J., and Hampe, J. 2007. Genetic investigation of DNA-repair pathway genes PMS2, MLH1, MSH2, MSH6, MUTYH, OGG1 and MTH1 in sporadic colon cancer. Int. J. Cancer 121: 555–558.PubMedCrossRefGoogle Scholar
  131. Schmitt, C. A., Thaler, K. R., Wittig, B. M., Kaulen, H., Meyer-zum-Büschenfelde, K. H., and Dippold, W. G. 1998. Detection of the DCC gene product in normal and malignant colorectal tissues and its relation to a codon 201 mutation. Br. J. Cancer 77: 588–594.PubMedCrossRefGoogle Scholar
  132. Schwartz, K., Richards, K., and Botstein, D. 1997. BIM1 encodes a microtubule-binding protein in yeast. Mol. Biol. Cell 8: 2677–2691.PubMedGoogle Scholar
  133. Shibata, D., Peinado, M. A., Ionov, Y., Malkhosyan, S., and Perucho, M. 1994. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat. Genet. 6: 273–281.PubMedCrossRefGoogle Scholar
  134. Siede, W., Kow, Y., and Doetsch, P. W. 2006. DNA damage recognition. New York, NY: CRC Press, pp. 263–267.Google Scholar
  135. Singh, S. V., Benson, P. J., Hu, X., Pal, A., Dunsford, H. A., and Rodriguez, L. V. 1998. Gender-related differences in susceptibility of A/J mouse to benzo[a]pyrene-induced pulmonary and forestomach tumorigenesis. Cancer Lett. 128: 197–204.PubMedCrossRefGoogle Scholar
  136. Sinha, R. 2002. An epidemiologic approach to studying heterocyclic amines. Mutat. Res. 506/507: 197–204.CrossRefGoogle Scholar
  137. Sinha, R., Rothman, N., Brown, E. D., Salmon, C. P., Knize, M. G., Swanson, C. A., Rossi, S. C., Mark, S. D., Levander, O. A., and Felton, J. S. 1995. High concentrations of the carcinogen 2-amino-1 methyl-6-phenylimidazo-[4.5-b]pyridine (PhIP) occur in chicken but are dependent on the cooking method. Cancer Res. 55: 4516–4519.PubMedGoogle Scholar
  138. Slattery, M. L., Anderson, K., Curtin, K., Ma, K. N., Schaffer, D., and Samowitz, W. 2001. Dietary intake and microsatellite instability in colon tumors. Int. J. Cancer 93: 601–607.PubMedCrossRefGoogle Scholar
  139. Slattery, M. L., Curtin, K., Anderson, K., Ma, K. N., Ballard, L., Edwards, S., Schaffer, D., Potter, J., Leppert, M., and Samowitz, W. S. 2000. Associations between cigarette smoking, lifestyle factors, and microsatellite instability in colon tumors. J. Natl. Cancer Inst. 92: 1831–1836.PubMedCrossRefGoogle Scholar
  140. Smith, K. J., Levy, D. B., Maupin, P., Pollard, T. D., Vogelstein, B., and Kinzler, K. W. 1994. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res. 54: 3672–3675.PubMedGoogle Scholar
  141. Spry, M., Scott, T., Pierce, H., and D’Orazio, J. A. 2007. DNA repair pathways and hereditary cancer susceptibility syndromes. Front. Biosci. 12: 4191–4207.PubMedCrossRefGoogle Scholar
  142. Stavric, B. 1994. Biological significance of trace levels of mutagenic heterocyclic aromatic amines in human diet: a critical review. Food Chem. Toxicol. 32: 977–994.PubMedCrossRefGoogle Scholar
  143. Strickland, P. T., and Groopman, J. D. 1995. Biomarkers for assessing environmental exposure to carcinogens in the diet. Am. J. Clin. Nutr. 61: 710S–720S.PubMedGoogle Scholar
  144. Su, L. K., Burrell, M., Hill, D. E., Gyuris, J., Brent, R., Wiltshire, R., Trent, J., Vogelstein, B., and Kinzler, K. W. 1995. APC binds to the novel protein EB1. Cancer Res. 55: 2972–2977.PubMedGoogle Scholar
  145. Su, L. K., Vogelstein, B., and Kinzler, K. W. 1993. Association of the APC tumor suppressor protein with catenins. Science 262: 1734–1737.PubMedCrossRefGoogle Scholar
  146. Sugimura, T. 1997. Overview of carcinogenic heterocyclic amines. Mutat. Res. 376: 211–219.PubMedCrossRefGoogle Scholar
  147. Thomas, G. V., Szigeti, K., Murphy, M., Draetta, G., Pagano, M., and Loda, M. 1998. Down-regulation of p27 is associated with development of colorectal adenocarcinoma metastases. Am. J. Pathol. 153: 681–687.PubMedCrossRefGoogle Scholar
  148. Toyooka, M., Konishi, M., Kikuchi-Yanoshita, R., Iwama, T., and Miyaki, M. 1995. Somatic mutations of the adenomatous polyposis coli gene in gastroduodenal tumors from patients with familial adenomatous polyposis. Cancer Res. 55: 3165–3170.PubMedGoogle Scholar
  149. Trock, B., Lanza, E., and Greenwald, P. 1990. Dietary fiber, vegetables, and colon cancer: critical review and meta-analysis of the epidemiologic evidence. J. Natl. Cancer Inst. 82: 650–661.PubMedCrossRefGoogle Scholar
  150. U.S. National Academy of Sciences. 1989. Diet and health. Washington, DC: National Academy Press.Google Scholar
  151. Vogelstein, B., Fearson, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A. C., Leppert, M., Nakamura, Y., White, R., Smits, A. M., and Bos, J. L. 1988. Genetic alterations during colorectal tumor development. N. Engl. J. Med. 319: 525–532.PubMedCrossRefGoogle Scholar
  152. Waldman, J. M., Lioy, P. J., Greenberg, A., and Butler, J. P. 1991. Analysis of human exposure to benzo(a)pyrene via inhalation and food ingestion in the Total Human Exposure Study (THEES). J. Expo. Anal. Environ. Epidemiol. 1: 193–225.PubMedGoogle Scholar
  153. Weir, J. M., and Dunn, J. E., Jr. 1970. Smoking and mortality: a prospective study. Cancer 25: 105–112.PubMedCrossRefGoogle Scholar
  154. Willet, W. C. 1995. Diet, nutrition, and avoidable cancer. Environ. Health Perspect. 103: 165–170.Google Scholar
  155. World Cancer Research Fund. 1997. Food, nutrition, and the prevention of cancer: a global perspective. Washington, DC: American Institute of Cancer Research, pp. 244–321.Google Scholar
  156. Wurzelmann, J. I., Silver, A., Schreinemachers, D. M., Sandler, R. S., and Everson, R. B. 1996. Iron intake and risk of colon cancer. Cancer Epidemiol. Biomarkers Prev. 5: 503–507.PubMedGoogle Scholar
  157. Yamaski, E., and Ames, B. N. 1977. Concentration of mutagens from urine by absorption with the nonpolar resin XAD-2: cigarette smokers have mutagenic urine. Proc. Natl. Acad. Sci. U.S.A. 74: 3555–3559.CrossRefGoogle Scholar
  158. Zeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T. J., Perry, W. L., Lee, J. J., Tilghman, S. M., Gumbiner, B. M., and Constantini, F. 1997. The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90: 181–192.PubMedCrossRefGoogle Scholar
  159. Zhang, F., White, R. L., and Neufeld, K. L. 2000. Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proc. Natl. Acad. Sci. U.S.A. 97: 12577–12582.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+ Business Media, LLC 2010

Authors and Affiliations

  • Aruna S. Jaiswal
    • 1
  • Melissa L. Armas
    • 1
  • Shahnjayla K. Connors
    • 1
  • Harekrushna Panda
    • 1
  • Satya Narayan
    • 1
    Email author
  1. 1.Department of Anatomy and Cell BiologyUF Shands Cancer Center, University of FloridaGainesvilleUSA

Personalised recommendations