ASTER TIR Radiometric Calibration and Atmospheric Correction

  • Hideyuki Tonooka
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


The ASTER/TIR subsystem obtains images by mechanical scanning with ten mercury–cadmium–telluride (MCT) photoconductive detectors, which are aligned along the track for each band (50 detectors in total) and cooled to 80 K using a mechanical split Stirling-cycle cooler (Fujisada et al. 1998). The TIR subsystem’s fixed gain covers the input radiance up to 370 K.


Modulation Transfer Function Atmospheric Correction Naval Research Laboratory Precipitable Water Vapor Atmospheric Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arai K, Tonooka H (2005) Radiometric performance evaluation of ASTER/VNIR, SWIR and TIR. IEEE Trans Geosci Remote Sens 43:2725–2732ADSCrossRefGoogle Scholar
  2. Deschamps PY, Phulpin T (1980) Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Mm. Bound Layer Meteorol 18:131–143ADSCrossRefGoogle Scholar
  3. ERSDAC, ASTER Ground Data System. Earth Remote Sensing Data Analysis Center. Tokyo.
  4. ERSDAC, ASTER Science Project. Earth Remote Sensing Data Analysis Center (ERSDAC). Tokyo.
  5. Fujisada H (1998) ASTER level-1 data processing algorithm. IEEE Trans Geosci Remote Sens 36(4):1101–1112ADSCrossRefGoogle Scholar
  6. Fujisada H, Sakuma F, Ono A, Kudoh M (1998) Design and preflight performance of ASTER instrument protoflight model. IEEE Trans Geosci Remote Sens 36:1152–1160ADSCrossRefGoogle Scholar
  7. Kalnay E, Kanamitsu M, Baker WE (1990) Global numerical weather prediction at the national meteorological center. Bull Am Meteorol Soc 71(10):1410–1428CrossRefGoogle Scholar
  8. Kneizys FX, Abreu LW, Anderson GP, Chetwynd JH, Shettle EP, Berk A, Bernstein LS, Robertson DC, Acharya P, Rothman LS, Selby JEA, Gallery WO, Clough SA (1996) The MODTRAN 2/3 Report and LOWTRAN 7 Model. Phillips Lab., Hanscom AFB, MA, F19628-91-C-0132.Google Scholar
  9. LP DAAC, Earth Observing System Data Gateway. Land Processes Distributed Active Archive Center, Sioux Falls, SD. U.S. Geological Survey,
  10. McMillin LM (1975) Estimation of sea surface temperatures from two infrared window measurements with different absorption. J Geophys Res 80(36):5113–5117ADSCrossRefGoogle Scholar
  11. McPeters RD, Bhartia PK, Krueger AJ, Jaross JR, Torres O, Moy L, Labow G, Byerly W, Taylor SL, Swissler T, Cebula RP (1998) Earth probe Total Ozone Mapping Spectrometer (TOMS) data products user’s guide. NASA, Greenbelt, MD, NASA Tech. Pub. 1998-206895.Google Scholar
  12. Menzel WP, Gumley LE (1998) MODIS atmospheric profile retrieval. Algorithm Theoretical Basis Document, Version 4, University of Wisconsin, Madison, WIGoogle Scholar
  13. Ono A, Sakuma F, Arai K, Yamaguchi Y, Fujisada H, Slater P, Thome K, Palluconi F, Kieffer H (1996) Preflight and in-flight calibration plan for ASTER. J Atmos Ocean Technol 13:321–335CrossRefGoogle Scholar
  14. Palluconi F, Hoover G, Alley R, Nilsen MJ, Thompson T (1999) An atmospheric correction method for ASTER thermal radiometry over land. Algorithm Theoretical Basis Document, Revision 3, Jet Propulsion Laboratory, Pasadena, CAGoogle Scholar
  15. Sakuma F, Ono A, Kudoh M, Inada H, Akagi S, Ohmae H (2002) ASTER on-board calibration status. Proc SPIE 4881:407–418CrossRefGoogle Scholar
  16. Sakuma F, Tonooka H, Ohgi N, Ono H (2005) Prediction of the radiometric calibration coefficients of ASTER/TIR. Proc SPIE 5978:277–284ADSGoogle Scholar
  17. Slater P, Biggar SF, Thome K, Gellman DI, Spyak PR (1996) Vicarious radiometric calibrations of EOS sensors. J Atmos Ocean Technol 13:349–359CrossRefGoogle Scholar
  18. Summers ME, Sawchuck W (1993) Zonally averaged trace constituent climatology. Naval Research Laboratory, Washington, DC, NRL Tech. Pub. RL/MR/7641-93-7416.Google Scholar
  19. Tonooka H (2000) Introduction of water vapor dependent coefficients to multispectral algorithms. (In Japanese). J Remote Sens Soc Japan 20(2):27–38Google Scholar
  20. Tonooka H (2001) An atmospheric correction algorithm for thermal infrared multispectral data over land – A water vapor scaling method. IEEE Trans Geosci Remote Sens 39(3):682–692ADSCrossRefGoogle Scholar
  21. Tonooka H (2005a) Inflight stray light analysis for ASTER thermal infrared bands. IEEE Trans Geosci Remote Sens 43(12):2752–2762ADSCrossRefGoogle Scholar
  22. Tonooka H (2005b) Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method. IEEE Trans Geosci Remote Sens 43(12):2778–2792ADSCrossRefGoogle Scholar
  23. Tonooka H, Palluconi F (2005) Validation of ASTER/TIR standard atmospheric correction using water surfaces. IEEE Trans Geosci Remote Sens 43(12):2769–2777ADSCrossRefGoogle Scholar
  24. Tonooka H, Sakuma F, Kudoh M, Iwafune K (2003) ASTER/TIR onboard calibration status and user-based recalibration. Proc SPIE 5234:191–201ADSCrossRefGoogle Scholar
  25. Tonooka H, Palluconi F, Hook S, Matsunaga T (2005) Vicarious calibration of ASTER thermal infrared bands. IEEE Trans Geosci Remote Sens 43:2733–2746ADSCrossRefGoogle Scholar
  26. USGS (2004) GTOPO30 – Global Topographic Data. U.S. Geological Survey, Sioux Falls, SD.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer & Information SciencesIbaraki UniversityHitachiJapan

Personalised recommendations