MODIS-Derived Terrestrial Primary Production

  • Maosheng Zhao
  • Steven Running
  • Faith Ann Heinsch
  • Ramakrishna Nemani
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of all the acronyms is available in the appendix at the end of the chapter) by the human population accounts for about 14–26% of global NPP (Imhoff et al. 2004). Rapid global climate change is induced by increased atmospheric greenhouse gas concentration, especially CO2, which results from human activities such as fossil fuel combustion and deforestation. This directly impacts terrestrial NPP, which continues to change in both space and time (Melillo et al. 1993; Prentice et al. 2001; Nemani et al. 2003), and ultimately impacts the well-being of human society (Milesi et al. 2005). Additionally, substantial evidence show that the oceans and the biosphere, especially terrestrial ecosystems, currently play a major role in reducing the rate of the atmospheric CO2 increase (Prentice et al. 2001; Schimel et al. 2001). NPP is the first step needed to quantify the amount of atmospheric carbon fixed by plants and accumulated as biomass. Continuous and accurate measurements of terrestrial NPP at the global scale are possible using satellite data. Since early 2000, for the first time, the MODIS sensors onboard the Terra and Aqua satellites, have operationally provided scientists with near real-time global terrestrial gross primary production (GPP) and net photosynthesis (PsnNet) data. These data are provided at 1 km spatial resolution and an 8-day interval, and annual NPP covers 109,782,756 km2 of vegetated land. These GPP, PsnNet and NPP products are collectively known as MOD17 and are part of a larger suite of MODIS land products (Justice et al. 2002), one of the core Earth System or Climate Data Records (ESDR or CDR).


Fine Root Leaf Area Index Gross Primary Production Vapor Pressure Deficit MOD17 Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by the NASA/EOS MODIS Project (NNG04HZ19C) and Natural Resource/Education Training Center (grant NAG5-12540). The improved 1-km MODIS terrestrial GPP and NPP data are available at We thank Dr. Niall Hanan for his thoughtful and insightful comments on an earlier draft of this paper.


  1. Abuelgasim AA, Fernandes RA, Leblanc SG (2006) Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada. IEEE Trans Geosci Remote Sens 2006(44):1872–1884ADSCrossRefGoogle Scholar
  2. Amthor JS (2000) The Mccree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Ann Bot (Lond) 86:1–20CrossRefGoogle Scholar
  3. Baisden WT (2006) Agriculture and forest productivity for modelling policy scenarios: evaluating approaches for New Zealand greenhouse gas mitigation. J R Soc N Z 36:1–15CrossRefGoogle Scholar
  4. Baldocchi D, 26 co-authors (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull Amer Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  5. Barrett DJ (2002) Steady state turnover time of carbon in the Australian terrestrialbiosphere. Global Biogeochem Cycles 16. doi:10.1029/2002GB001860Google Scholar
  6. Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot (Lond) 85:45–54CrossRefGoogle Scholar
  7. Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of different biomes. Ecosystems 1:206–215CrossRefGoogle Scholar
  8. Clark DA, Brown S, Kicklighter D, Chambers J, Thomlinson JR, Ni J, Holland EA (2001) Net Primary Production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384CrossRefGoogle Scholar
  9. Cohen WB, Maiersperger TK, Turner DP, Ritts WD, Pflugmacher D, Kennedy RE, Kirschbaum A, Running SW, Costa M, Gower ST (2006) MODIS land cover and LAI Collection 4 product quality across nine sites in the Western Hemisphere. IEEE Trans Geosci Remote Sens 44(7):1843–1857ADSCrossRefGoogle Scholar
  10. Cohen WB, Maiersperger TK, Yang Z, Gower ST, Turner DP, Ritts WD, Berterretche M, Running SW (2003) Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products. Remote Sens Environ 88:221–362CrossRefGoogle Scholar
  11. Falge E, 31 co-authors (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113:75–95ADSCrossRefGoogle Scholar
  12. Gower ST, Krankina O, Olson RJ, Apps MJ, Linder S, Wang C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–1411CrossRefGoogle Scholar
  13. Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK (1997) Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res 104(D22):29029–29041ADSCrossRefGoogle Scholar
  14. Gifford RM (2003) Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171–186CrossRefGoogle Scholar
  15. Heinsch FA, 12 co-authors (2003) User’s Guide: GPP and NPP (MOD17A2/A3) Products, NASA MODIS Land Algorithm. University of Montana, NTSG, 57Google Scholar
  16. Heinsch FA, 25 co-authors (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using ameriflux tower eddy flux network observations. IEEE Trans Geosci Remote Sens 44:1908–1925ADSCrossRefGoogle Scholar
  17. Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett 33:L06405, doi:10.1029/2005GL025583CrossRefGoogle Scholar
  18. Imhoff ML, Bounoua L, Richetts T, Loucks C, Harriss R, Lawrence WT (2004) Global pattern in human consumption of net primary production. Nature 429:870–873ADSCrossRefGoogle Scholar
  19. Jolly WM, Nemani R, Running SW (2005a) A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob Change Biol 11:619–632CrossRefGoogle Scholar
  20. Jolly WM, Graham JM, Nemani RR, Running SW (2005b) A flexible, integrated system for generating meteorological surfaces derived from point sources across multiple geographic scales. Environ Model Software 20:873–882CrossRefGoogle Scholar
  21. Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT (2002) An overview of MODIS Land data processing and product status. Remote Sens Environ 83:3–15CrossRefGoogle Scholar
  22. Kang S, Running SW, Zhao M, Kimball JS, Glassy J (2005) Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels. Int J Remote Sens 28:1659–1676CrossRefGoogle Scholar
  23. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2001) Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000: 1. Global aspects, SIO Reference Series, 01–06 Scripps Institution of Oceanography, San DiegoGoogle Scholar
  24. Leuning R, Cleugh HA, Zegelin SJ, Hughes DE (2005) Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/day savanna in Australia: measurements and comparison with MODIS remote sensing estimates. Agric For Meteorol 129:151–173CrossRefGoogle Scholar
  25. Loehman R (2006) Modeling interactions among climate. Landscape, and emerging diseases: a hantavirus case study. Ph.D. dissertation, University of MontanaGoogle Scholar
  26. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541ADSCrossRefGoogle Scholar
  27. Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 63:234–240ADSCrossRefGoogle Scholar
  28. Mesinger F, 18 co-authors (2006) North American regional reanalysis. Bull Amer Meteorol Soc 87:343–360CrossRefGoogle Scholar
  29. Meyerson L, Baron J, Melillo J, Naiman R, O’Malley R, Orians G, Palmer M, Pfaff A, Running S, Sala O (2005) Aggregate measures of ecosystem services: Can we take the pulse of nature? Front Ecol Environ 3:56–59CrossRefGoogle Scholar
  30. Milesi C, Elvidge CD, Nemani RR, Running SW (2003a) Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens Environ 86:273–432CrossRefGoogle Scholar
  31. Milesi C, Elvidge CD, Nemani RR, Running SW (2003b) Assessing the environmental impacts of human settlements using satellite data. Manage Environ Qual 14:99–107CrossRefGoogle Scholar
  32. Milesi C, Hashimoto H, Running SW, Nemani RR (2005) Climate variability, vegetation productivity and people at risk. Global Planet Change 47:221–231ADSCrossRefGoogle Scholar
  33. Miller SD, Hawkins JD, Kent J, Turk FJ, Lee TF, Kuciauskas AP, Richardson K, Wade R, Hoffman C (2006) Nexsat: Previewing NPOESS/VIIRS Imagery Capabilities. Bull Amer Meteorol Soc 87:433–446CrossRefGoogle Scholar
  34. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766CrossRefGoogle Scholar
  35. Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond B 281:277–294ADSCrossRefGoogle Scholar
  36. Mu Q, Zhao M, Heinsch FA, Liu M, Tian H, Running SW (2006a) Evaluating water stress controls on primary production in biogeochemical and remote sensing-based models. J Geophys Res 112:G01012, doi:10.1029/2006JG000179CrossRefGoogle Scholar
  37. Mu Q, Heinsch FA, Zhao M, Running SW, Cleugh HA, Leuning R (2006b) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536Google Scholar
  38. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981–1991. Nature 386:698–702ADSCrossRefGoogle Scholar
  39. Myneni RB, 15 co-authors (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231CrossRefGoogle Scholar
  40. Wythers KR, Reich P, Tjoelker MG, Bolstad PB (2005) Foliar respiration acclimation to temperature and temperature variable Q10 alter ecosystem carbon balance. Glob Change Biol 11:435–449CrossRefGoogle Scholar
  41. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563ADSCrossRefGoogle Scholar
  42. Niemeijer D (2002) Developing indicators for environmental policy: data-driven and theory-driven approaches examined by example. Environ Sci Policy 5:91–103CrossRefGoogle Scholar
  43. Pan Y, Birdsey R, Hom J, McCullough K, Clark K (2006) Improved estimates of net primary productivity from MODIS satellite data at regional and local scales. Ecol Appl 16:125–132CrossRefGoogle Scholar
  44. Pandya MR, Singh RP, Chaudhari KN, Bairagi GD, Sharma BR, Dadhwal VK, Parihar JS (2006) Leaf area index retrieval using IRS LISS-III sensor data and validation of the MODIS LAI product over central India. IEEE Trans Geosci Remote Sens 44:1858–1865ADSCrossRefGoogle Scholar
  45. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Ding JY, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, T. Houghton, 182–237Google Scholar
  46. Reeves MC, Zhao M, Running SW (2005) Usefulness and limits of MODIS GPP for estimating wheat yield. Int J Remote Sens 27:1403–1421CrossRefGoogle Scholar
  47. Reeves MC, Zhao M, Running SW (2006) Applying improved estimates of MODIS productivity to characterize grassland vegetation dynamics. Rangeland Ecol Manage 59:1–10CrossRefGoogle Scholar
  48. Reichstein M, Valentini R, Running SW, Tenhunen J (2004) Improving remote sensing-based GPP estimates (MODIS-MODI7) through inverse parameter estimation with CARBOEUROPE eddy covariance flux data. EGU meeting Nice 2004. Geophys Res Abstr 6:01388Google Scholar
  49. Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOMEBGC, and an application for global-scale models. In: Ehleringer JR, Field CB (eds) Scaling physiological processes: leaf to globe. Academic Press, San Diego, pp 141–158CrossRefGoogle Scholar
  50. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary productivity: Future science and applications. Bioscience 56:547–560CrossRefGoogle Scholar
  51. Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens Environ 70:108–128CrossRefGoogle Scholar
  52. Running SW, Thornton PE, Nemani RR, Glassy JM (2000) Global terrestrial gross and net primary productivity from the earth observing system. In: Sala O, Jackson R, Mooney H (eds) Methods in Ecosystem Science. Springer-Verlag, New York, pp 44–57CrossRefGoogle Scholar
  53. Ryan MG (1991) The effects of climate change on plant respiration. Ecol Appl 1:157–167CrossRefGoogle Scholar
  54. Sala OE, 18 co-authors (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  55. Schimel DS, 29 co-authors (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172ADSCrossRefGoogle Scholar
  56. Strahler AH, Friedl M, Zhang X, Hodges J, Cooper CSA, Baccini A (2002) The MODIS land cover and land cover dynamics products Presentation at Remote Sensing of the Earth’s Environment from Terra in L’Aquila, ItalyGoogle Scholar
  57. Tjoelker MG, Oleksyn J, Reich P (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Change Biol 7:223–230CrossRefGoogle Scholar
  58. Tucker CJ, Townshend JRG, Goff TE (1985) African land-cover classification using satellite data. Science 227:369–375ADSCrossRefGoogle Scholar
  59. Turner DP, Ritts WD, Zhao M, Kurc SA, Dunn AL, Wofsy SC, Small EE, Running SW (2006a) Assessing interannual variation in MODIS-based estimates of gross primary production. IEEE Trans Geosci Remote Sens 44:1899–1907ADSCrossRefGoogle Scholar
  60. Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costae MH, Kirschbaum AA, Ham JM, Saleska SS, Ahl DE (2006b) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ 102:282–292CrossRefGoogle Scholar
  61. Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST, Gregory M (2003a) A cross-biome comparison of daily light use efficiency for gross primary production. Glob Change Biol 9:383–395CrossRefGoogle Scholar
  62. Turner DP, Ritts WD, Cohen WB, Gower ST, Zhao M, Running SW, Wofsy SC, Urbanski S, Dunn SA, Munger JW (2003b) Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sens Environ 88:256–270CrossRefGoogle Scholar
  63. Turner DP, 17 co-authors (2005) Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Glob Change Biol 11:666–684CrossRefGoogle Scholar
  64. Wang Y, Woodcock CE, Buermann W, Stenberg P, Voipio P, Smolander H, Häme T, Tian Y, Hu J, Knyazikhin Y, Myneni RB (2004) Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sens Environ 91:114–127CrossRefGoogle Scholar
  65. Waring RH, Landsberg JJ, Williams M (1998) Net primary production of forests: a constant fraction of gross primary production? Tree Physiol 18:129–134CrossRefGoogle Scholar
  66. Waring RH, Coops NC, Fan W, Nightingale JM (2006) MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the contiguous U.S.A. Remote Sens Environ 103:218–226CrossRefGoogle Scholar
  67. Yang W, Huang D, Tan B, Stroeve JC, Shabanov NV, Knyazikhin Y, Nemani RR, Myneni RB (2006) Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000–2005. IEEE Trans Geosci Remote Sen 44:1829−1842CrossRefGoogle Scholar
  68. Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sens Environ 95:164–176CrossRefGoogle Scholar
  69. Zhao M, Running SW, Nemani RR (2006) Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J Geophys Res 111:G01002, doi:10.1029/2004JG000004CrossRefGoogle Scholar
  70. Zheng D, Prince S, Wright R (2003) Terrestrial net primary production estimates for 0.5° grid cells from field observations – a contribution to global biogeochemical modeling. Glob Change Biol 9:46–64CrossRefGoogle Scholar
  71. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069–20083ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maosheng Zhao
    • 1
  • Steven Running
  • Faith Ann Heinsch
  • Ramakrishna Nemani
  1. 1.Numerical Terradynamic Simulation GroupUniversity of MontanaMissoulaUSA

Personalised recommendations