MODIS Vegetation Indices

  • Alfredo Huete
  • Kamel Didan
  • Willem van Leeuwen
  • Tomoaki Miura
  • Ed Glenn
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


Assessments of vegetation condition, cover, change, and processes are major ­components of global change research programs, and are topics of considerable societal relevance. Spectral vegetation indices are among the most widely used satellite data products, which provide key measurements for climate, hydrologic, and biogeochemical studies; phenology, land cover, and land cover change detection; natural resource management and sustainable development. Vegetation indices (VI) are robust and seamless data products computed similarly across all pixels in time and space, regardless of biome type, land cover condition, and soil type, and thus represent true surface measurements. The simplicity of VIs enables their amalgamation across ­sensor systems, which facilitates an ensured continuity of critical datasets for long-term land surface modeling and climate change studies. Currently, a more than two decades long NOAA Advanced Very High Resolution Radiometer (AVHRR)-derived consistent global normalized difference vegetation index (NDVI) land record exists, which has contributed significantly to global biome, ecosystem, and agricultural studies.


Normalize Difference Vegetation Index Leaf Area Index Gross Primary Productivity Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Asrar G, Fuchs M, Kanemasu ET, Hatfield SL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron J 76:300–306CrossRefGoogle Scholar
  2. Beck LR, Lobitz BM, Wood BL (2000) Remote sensing and human health: new sensors and new opportunities. Emerg Infect Dis 6:217–227CrossRefGoogle Scholar
  3. Beck PSA, Atzberger C, Høgda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens Environ 100:321–334CrossRefGoogle Scholar
  4. Brown ME, Pinzon JE, Didan K, Morisette JT, Tucker CJ (2006) Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans Geosci Remote Sens 44:1787–1793ADSCrossRefGoogle Scholar
  5. Chen X, Vierling L, Deering D, Conley A (2005) Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study. Int J Remote Sens 26:5433–5451CrossRefGoogle Scholar
  6. Cheng Y, Gamon JA, Fuentes DA, Mao Z, Sims DA, Qiu H, Claudio H, Huete A, Rahman AF (2006) A multi-scale analysis of dynamic optical signals in a Southern California chaparral ecosystem: a comparison of field, AVIRIS and MODIS data. Remote Sens Environ 103:369–378CrossRefGoogle Scholar
  7. Choudhury BJ (1987) Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis. Remote Sens Environ 22:209–233CrossRefGoogle Scholar
  8. Chuvieco E, Ventura G, Martin MP, Gomez I (2005) Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping. Remote Sens Environ 94:450–462CrossRefGoogle Scholar
  9. Cihlar J, Manak D, Voisin N (1994) AVHRR bidirectional reflectance effects and compositing. Remote Sens Environ 48:77–88CrossRefGoogle Scholar
  10. Cohen WB, Maiersperger TK, Yang Z, Gower ST, Turner DP, Ritts WD, Berterretche M, Running SW (2003) Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products. Remote Sens Environ 88:233–255CrossRefGoogle Scholar
  11. Fensholt R (2004) Earth observation of vegetation status in the Sahelian and Sudanian West Africa: comparison of terra MODIS and NOAA AVHRR satellite data. Int J Remote Sens 25:1641–1659CrossRefGoogle Scholar
  12. Fensholt R, Sandholt I, Stisen S, Tucker C (2006) Analysing NDVI for the African continent using the geostationary Meteosat second generation SEVIRI sensor. Remote Sens Environ 101:212–229CrossRefGoogle Scholar
  13. Ferreira NC, Ferreira LG, Huete AR, Ferreira ME (2007) An operational deforestation mapping system using MODIS data and spatial context analysis. Int J Remote Sens 28:47–62CrossRefGoogle Scholar
  14. Field CB, Randerson JT, Malmstrom CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51:74–88CrossRefGoogle Scholar
  15. Franklin KA, Lyons K, Nagler PL, Lampkin D, Glenn EP, Molina-Freaner F, Markow T, Huete AR (2006) Buffelgrass (Pennisetum ciliare) land conversion and productivity in the plains of Sonora, Mexico. Biol Conserv 127:62–71CrossRefGoogle Scholar
  16. Gallo KP, Eidenshink JC (1988) Differences in visible and near-IR responses, and derived vegetation indices, for the NOAA-9 and NOAA-10 AVHRRs: a case study. Photogramm Eng Remote Sens 54:485–490Google Scholar
  17. Gallo K, Ji L, Reed B, Dwyer J, Eidenshink J (2004) Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data. Geophys Res Lett 31:L07502. doi:10.1029/2003GL019385CrossRefGoogle Scholar
  18. Gallo K, Ji L, Reed B, Eidenshink J, Dwyer J (2005) Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sens Environ 99:221–231CrossRefGoogle Scholar
  19. Gao X, Huete AR, Ni W, Miura T (2000) Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ 74:609–620CrossRefGoogle Scholar
  20. Gao X, Huete AR, Didan K (2003) Multisensor comparisons and validation of MODIS vegetation indices at the semiarid Jornada Experimental Range. IEEE Trans Geosci Remote Sens 41:2368–2381ADSCrossRefGoogle Scholar
  21. Glenn EP, Huete AR, Nagler PL, Hirschboeck KK, Brown P (2007) Integrating remote sensing and ground methods to estimate evapotranspiration. CRC Crit Rev Plant Sci 26:139–168CrossRefGoogle Scholar
  22. Gobron N, Pinty B, Verstraete MM, Widlowski JL (2000) Advanced vegetation indices optimized for up-coming sensors: design, performance, and applications. IEEE Trans Geosci Remote Sens 38:2489–2505ADSCrossRefGoogle Scholar
  23. Goward SN, Huemmrich KF (1992) Vegetation canopy PAR absorptance and the normalized difference vegetation index: an assessment using the SAIL model. Remote Sens Environ 39:119–140CrossRefGoogle Scholar
  24. Gutman G, Ignatov A (1998) The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int J Remote Sens 19:1533–1543CrossRefGoogle Scholar
  25. Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1434CrossRefGoogle Scholar
  26. Houborg RM, Soegaard H (2004) Regional simulation of ecosystem CO2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data. Application to Zealand, Denmark. Remote Sens Environ 93:150–167CrossRefGoogle Scholar
  27. Huemmrich KF (2001) The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance. Remote Sens Environ 75:423–431CrossRefGoogle Scholar
  28. Huemmrich KF, Privette JL, Mukelabai M, Myneni RB, Knyazikhin Y (2005) Time series validation of MODIS land biophysical products in a Kalahari woodland, Africa. Int J Remote Sens 26:4381–4398CrossRefGoogle Scholar
  29. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309CrossRefGoogle Scholar
  30. Huete AR (1989) Soil influences in remotely sensed vegetation canopy spectra. In: Asrar G (ed) Theory and applications of optical remote sensing. Wiley, New York, pp 107–141Google Scholar
  31. Huete AR, Liu H (1994) An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for MODIS-EOS. IEEE Trans Geosci Remote Sens 32:897–905ADSCrossRefGoogle Scholar
  32. Huete A, Keita F, Thomé K, Privette J, van Leeuwen WJD, Justice C, Morisette J (1999) A light aircraft radiometric package for MODLAND quick airborne looks (MQUALS). Earth Obs 11:22Google Scholar
  33. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  34. Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006a) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett 33:L06405. doi:10.1029/2005GL025583CrossRefGoogle Scholar
  35. Huete AR, Miura T, Kim Y, Didan K, Privette J (2006b) Assessments of multisensor vegetation index dependencies with hyperspectral and tower flux data. In: SPIE proceedings on remote sensing and modeling of ecosystems for sustainability III, vol 6298-45, San Diego, CAGoogle Scholar
  36. Ichii K, Hashimoto H, White MA, Potter C, Hutyra LR, Huete AR, Myneni RB, Nemani RR (2007) Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality. Global Chang Biol 13:67–77CrossRefGoogle Scholar
  37. Jiang Z, Huete AR, Chen J, Chen Y, Li J, Yan G, Zhang X (2006) Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens Environ 101:366–378CrossRefGoogle Scholar
  38. Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a 2-band enhanced vegetation index without a blue band. Remote Sens Environ 112:3833–3845CrossRefGoogle Scholar
  39. Jin S, Sader SA (2005) MODIS time-series imagery for forest disturbance detection and quantification of patch size effects. Remote Sens Environ 99:462–470CrossRefGoogle Scholar
  40. Kaufman Y, Tanré D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens 30:261–270ADSCrossRefGoogle Scholar
  41. Kaufman YJ, Remer LA, Tanre D, Li R, Kleidman R, Mattoo S, Levy RC, Eck TF, Holben BN, Ichoku C, Martins JV, Koren I (2005) A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. IEEE Trans Geosci Remote Sens 43:2886–2897ADSCrossRefGoogle Scholar
  42. Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang G, Wang S (2005) Monitoring of forage conditions with MODIS imagery in the Xilingol steppe, Inner Mongolia. Int J Remote Sens 26:1423–1436CrossRefGoogle Scholar
  43. Liu H, Huete A (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33:457–465ADSCrossRefGoogle Scholar
  44. Los SO, North PRJ, Grey WMF, Barnsley MJ (2005) A method to convert AVHRR normalized difference vegetation index time series to a standard viewing and illumination geometry. Remote Sens Environ 99:400–411CrossRefGoogle Scholar
  45. Miura T, Huete A, van Leeuwen WJD, Didan K (1998) Vegetation detection through smoke-filled AVIRIS images: an assessment using MODIS band passes. J Geophys Res 103:32001–32011ADSCrossRefGoogle Scholar
  46. Miura T, Huete AR, Yoshioka H (2000) Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans Geosci Remote Sens 38:1399–1409ADSCrossRefGoogle Scholar
  47. Miura T, Huete AR, Yoshioka H, Holben BN (2001) An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction. Remote Sens Environ 78:284–298CrossRefGoogle Scholar
  48. Miura T, Huete A, Yoshioka H (2006) An empirical investigation of cross-sensor relationships of NDVI and red/near-infrared reflectance using EO-1 Hyperion data. Remote Sens Environ 100:223–236CrossRefGoogle Scholar
  49. Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn, Arnold, LondonGoogle Scholar
  50. Morisette JT, Privette JL, Justice CO (2002) A framework for the validation of MODIS Land products. Remote Sens Environ 83:77–96CrossRefGoogle Scholar
  51. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702ADSCrossRefGoogle Scholar
  52. Nagler PL, Scott RL, Westenburg C, Cleverly JR, Glenn EP, Huete AR (2005a) Evapotranspiration on western U.S. rivers estimated using the enhanced vegetation index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens Environ 97:337–353CrossRefGoogle Scholar
  53. Nagler PL, Cleverly J, Glenn E, Lampkin D, Huete A, Wan Z (2005b) Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens Environ 94:17–35CrossRefGoogle Scholar
  54. Nagler PL, Glenn EP, Kim H, Emmerich W, Scott RL, Huxman TE, Huete AR (2007) Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. J Arid Environ 70:443–462CrossRefGoogle Scholar
  55. NASA CASA Project (2008) Accessed 27 Feb 2008
  56. NASA Science Mission Directorate (2008) Accessed 27 Feb 2008
  57. Potter C, Klooster S, Huete A, Genovese V (2007) Terrestrial carbon sinks for the United States predicted from MODIS satellite data and ecosystem modeling. Earth Interact 11:1–21CrossRefGoogle Scholar
  58. Rahman AF, Sims DA, Cordova VD, El-Masri BZ (2005) Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys Res Lett 32:L19404. doi:10.1029/2005GL024127ADSCrossRefGoogle Scholar
  59. Ratana P, Huete AR, Ferreira L (2005) Analysis of cerrado physiognomies and conversion in the MODIS seasonal-temporal domain. Earth Interact 8:1–22CrossRefGoogle Scholar
  60. Reed BC, White M, Brown JF 2003. Remote sensing phenology. In: Schwartz MD (ed) Phenology: an integrative environmental science, Tasks for vegetation science, vol 39. Kluwer, Dordrecht, The Netherlands, p 569Google Scholar
  61. Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H (2005) A crop phenology detection method using time-series MODIS data. Remote Sens Environ 96:366–374CrossRefGoogle Scholar
  62. Sakamoto T, Van Nguyen N, Ohno H, Ishitsuka N, Yokozawa M (2006) Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens Environ 100:1–16CrossRefGoogle Scholar
  63. Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148CrossRefGoogle Scholar
  64. Schnase JL, Stohlgren TJ, Smith JA (2002) The National Invasive Species Forecasting System: a strategic NASA/USGS partnership to manage biological invasions. Earth Observing Magazine August 2002:46–49Google Scholar
  65. Seelan SK, Laguette S, Casady GM, Seielstad GA (2003) Remote sensing applications for precision agriculture: a learning community approach. Remote Sens Environ 88:157–169CrossRefGoogle Scholar
  66. Sellers PJ (1987) Canopy reflectance, photosynthesis, and transpiration. II. The role of biophysics in the linearity of their interdependence. Remote Sens Environ 21:143–183CrossRefGoogle Scholar
  67. Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Oechel WC, Schmid HP, Wofsy SC, Xu L (2006) On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J Geophys Res 111:G04015. doi:10.1029/2006JG000162CrossRefGoogle Scholar
  68. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  69. Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498CrossRefGoogle Scholar
  70. Upper Midwest Aerospace Consortium (2008) Accessed 27 Feb 2008
  71. USAID Famine Early Warning Systems (2008) Accessed 27 Feb 2008
  72. Foreign Agriculture Service USDA (2008) Crop explorer. Accessed 27 Feb 2008
  73. USGS Invasive Species Forecasting System (2008) Accessed 27 Feb 2008
  74. van Leeuwen WJD, Orr BJ, Marsh SE, Herrmann SM (2006) Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications. Remote Sens Environ 100:67–81CrossRefGoogle Scholar
  75. Wang Q, Adiku S, Tenhunen J, Granier A (2005) On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens Environ 94:244–255CrossRefGoogle Scholar
  76. Xiao X, Braswell B, Zhang Q, Boles S, Frolking S, Moore B III (2003) Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote Sens Environ 84:385–392CrossRefGoogle Scholar
  77. Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore B III, Ojima D (2004) Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ 91:256–270CrossRefGoogle Scholar
  78. Xiao XM, Zhang QY, Hollinger D, Aber J, Moore B III (2005a) Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecol Appl 15:954–969CrossRefGoogle Scholar
  79. Xiao X, Zhang Q, Saleska S, Hutyra L, De Camargo P, Wofsy S, Frolking S, Boles S, Keller M, Moore B III (2005b) Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens Environ 94:105–122CrossRefGoogle Scholar
  80. Xiao X, Hagen S, Zhang Q, Keller M, Moore B III (2006a) Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sens Environ 103:465–473CrossRefGoogle Scholar
  81. Xiao X, Boles S, Frolking S, Li C, Babu JY, Salas W, Moore B III (2006b) Mapping paddy rice agriculture in south and Southeast Asia using multi-temporal MODIS images. Remote Sens Environ 100:95–113CrossRefGoogle Scholar
  82. Yang F, White MA, Michaelis AR, Ichii K, Hashimoto H, Votava P, Zhu AX, Nemani RR (2006) Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine. IEEE Trans Geosci Remote Sens 44:3452–3461ADSCrossRefGoogle Scholar
  83. Yang F, Ichii K, White MA, Hashimoto H, Michaelis AR, Votava P, Zhu AX, Huete A, Running SW, Nemani RR (2007) Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sens Environ 110:109–122CrossRefGoogle Scholar
  84. Yoshioka H, Miura T, Huete AR (2003) An isoline-based translation technique of spectral vegetation index using EO-1 Hyperion data. IEEE Trans Geosci Remote Sens 41:1363–1372ADSCrossRefGoogle Scholar
  85. Zha Y, Gao J, Ni S, Shen N (2005) Temporal filtering of successive MODIS data in monitoring a locust outbreak. Int J Remote Sens 26:5665–5674CrossRefGoogle Scholar
  86. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475CrossRefGoogle Scholar
  87. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Schneider A (2004) The footprint of urban climates on vegetation phenology. Geophys Res Lett 31:L12209. doi:10.1029/2004GL020137ADSGoogle Scholar
  88. Zhang Q, Xiao X, Braswell B, Linder E, Baret F, Moore B III (2005) Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens Environ 99:357–371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alfredo Huete
    • 1
  • Kamel Didan
  • Willem van Leeuwen
  • Tomoaki Miura
  • Ed Glenn
  1. 1.Department Soil, Water & Environmental ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations