MODIS Directional Surface Reflectance Product: Method, Error Estimates and Validation

Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


The surface bidirectional reflectance factor (BRF) is the ratio between reflected radiance measured in specific observation geometry (zenith and azimuth) within an infinitely small solid angle and irradiance incident on the surface from a direct source of illumination (zenith and azimuth). The BRF is determined from satellite observations through an atmospheric correction (AC) process. When properly retrieved, the surface BRF is fully decoupled from an atmospheric signal, and thus represents the value as measured by an ideal sensor held at the same view geometry and located just above the Earth’s surface assuming an absence of atmosphere.


Surface Reflectance Atmospheric Correction Aerosol Optical Thickness Bidirectional Reflectance Distribution Function Aerosol Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Coulson KL, Dave JV, Sekera Z (1960) Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering. University of California Press, Berkley.Google Scholar
  2. Deschamps PY, Herman M, Tanré D (1983) Modeling of the atmospheric effects and its applications to the remote sensing of ocean color. Appl Opt 22(23):3751–3758.ADSCrossRefGoogle Scholar
  3. Gao BC, Kaufman YJ (2003) Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J Geophys Res 108(D13):4389, doi.:10.1029/2002JD0003023.CrossRefGoogle Scholar
  4. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzerm A, Vermote EF, Reagan JA, Kaufman Y, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET – a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16.CrossRefGoogle Scholar
  5. Hsu NC, Tsay SC, King MD, Herman JR (2004) Aerosol properties over bright reflecting source regions. IEEE Trans Geosci Remote Sens 42(3):557–569.ADSCrossRefGoogle Scholar
  6. Imager (2008) (click on ‘Software’). Accessed 31 Jan 2008.
  7. Kaufman YJ, Tanré D, Remer L, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer. J Geophys Res 102(14):17051–17068.ADSCrossRefGoogle Scholar
  8. Kotchenova SY, Vermote EF (2007) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II: Homogeneous Lambertian and anisotropic surfaces. Appl Opt 46(20):4455–4464.ADSCrossRefGoogle Scholar
  9. Kotchenova SY, Vermote EF, Matarrese R, Klemm F Jr. (2006) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance. Appl Opt 45(26):6726–6774.Google Scholar
  10. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman Y (2007) Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of MODIS spectral reflectance. J Geophys Res 112:D13211, doi:10.1029/2006JD007811.ADSCrossRefGoogle Scholar
  11. Lyapustin A, Wang Y (2007) MAIAC: Multi-Angle implementation of atmospheric correction for MODIS. Algorithm Theoretical Basis Document, 69 Accessed 31 Jan 2008.
  12. MODIS Land Quality Assessment (2008) Web site Accessed 31 Jan 2008.
  13. Muldashev TZ, Lyapustin AI, Sultangazin UM (1999) Spherical harmonics method in the problem of radiative transfer in the atmosphere-surface system. J Quant Spectrosc Radiat Transf 61(3):393–404.ADSCrossRefGoogle Scholar
  14. NASA’s Total Ozone Mapping Spectrometer (TOMS) (2008) Web site Accessed 31 Jan 2008.
  15. National Center for Environmental Prediction Global Data Assimilation System (NCEP GDAS) (2008) Accessed 31 Jan 2008.
  16. Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li R-R, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote EF, Holben BN (2005) The MODIS aerosol algorithm, products and validation. J Atmos Sc 62(4):947–973.ADSCrossRefGoogle Scholar
  17. Terra MODIS Collection 5 Surface Reflectance Evaluation (2003 time-series science test analysis) Accessed 31 Jan 2008.
  18. U.S. Geological Survey (2008) Accessed 31 Jan 2008.
  19. Vermote EF, Saleous NZ (2006) Operational atmospheric correction of MODIS visible to middle infrared land surface data in the case of an infinite Lambertian target. In: Qu JJ,Gao W, Kafatos M, Murphy RE, Salomonson VV (eds) Earth science satellite remote sensing, science and instruments, Tsinghua University Press/Springer, Beijing/Berlin 1, ch. 8, pp. 123–153.CrossRefGoogle Scholar
  20. Vermote EF, Vermeulen A (1999) MODIS atmospheric correction over land: surface reflectance. Algorithm Theoretical Background Document, Version 4.0. (click “Products and User’s Guide”). Accessed 31 Jan 2008.
  21. Vermote EF, Tanré D, Deuzé JL, Herman M, Morcrette JJ (1997) Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans Geosci Remote Sens 35(3):675–686.ADSCrossRefGoogle Scholar
  22. Vermote EF, Tanré D, Deuzé JL, Herman M, Morcrette JJ, Kotchenova SY, Miura T (2006) Second simulation of the satellite signal in the solar spectrum (6S), 6S User Guide Version 3, Accessed 31 Jan 2008.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of GeographyUniversity of MarylandCollege ParkUSA

Personalised recommendations