Using ASTER Stereo Images to Quantify Surface Roughness

  • Amit Mushkin
  • Alan Gillespie
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


The unresolved topographic expression of surfaces, surface roughness (SR), is a fundamental surface property that conveys useful information for a wide range of Earth and planetary sciences. Yet, this information is difficult to measure remotely because most spaceborne imagers have resolutions on the order of meters to hundreds of meters and SR can vary significantly below these scales. One way to measure SR is to exploit differential shadowing in stereo images, and in particular, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), with its nadir (3N) and backward-looking (3B) near-infrared channels. We have proposed a simple ratio of land-leaving radiance in those two channels as a measure of relative SR at scales <15 m/pixel. This “two-look” relative SR measure is simple, robust, and insensitive to atmospheric conditions, and thus ASTER 3B/3N ratio images are suggested as a useful and readily accessible tool for photo-interpretation. Moreover, one could calibrate the ratio data to physical parameters, such as RMS height, and translate to SR maps at 15 m/pixel resolution. Two calibration schemes enable this translation: empirical calibration against independent in situ roughness measurements and model-based calibration against forward simulations of ­two-look ratios from very high-resolution (<5 mm) digital elevation models of natural ­surfaces, measured with a ground-based light detection and ranging ­system. Here, we focus on the latter scheme that enables construction of calibration curves for any given viewing and illumination geometries encountered by ASTER. ASTER now ­provides a global archive of images, and the two-look approach with ASTER stereo data enables a unique quantitative mapping capability of SR at 15 m/pixel spatial resolution for almost anywhere on Earth.


Surface Roughness Atmospheric Correction Stereo Image Calibration Scheme Solar Elevation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams JB and Gillespie AR (2006) Spectral Remote Sensing of Landscapes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Christensen PR (1986) The spatial distribution of rocks on Mars. Icarus 68:217–238ADSCrossRefGoogle Scholar
  3. Combe JP, Adams JB, McCord TB (2006) Mapping geological units on Mars by analyzing the spectral properties of the surface from the Mars-express high resolution stereo camera (HRSC). EOS, Transactions, American Geophysical Union, vol. Fall Meeting SupplementGoogle Scholar
  4. Conel JE, Alley RE (1984) Lisbon Valley, Utah, Uranium Test Site Report. In: The Joint NASA/Geosat Test Case Project, Paley H (ed) AAPG, Tulsa, OKGoogle Scholar
  5. Evans DL, Smith MO (1991) Separation of vegetation and rock signatures in thematic mapper and polarimetric SAR images. Remote Sens Environ 37:63–75CrossRefGoogle Scholar
  6. Evans DL, Farr TG, van Zyl JJ (1992) Estimates of surface roughness derived from synthetic aperture radar (SAR) data. IEEE Trans Geosci Remote Sens 30(2):382–389ADSCrossRefGoogle Scholar
  7. Gillespie AR, Kahle AB, Palluconi FD (1984) Mapping alluvial fans in Death Valley, California, using multispectral thermal infrared images. Geophys Res Lett 11:1153–11556ADSCrossRefGoogle Scholar
  8. Golombek MP, Arvidson RE, Bell JF, Christensen PR, Crisp JA, Crumpler LS, Ehlmann BL, Fergason RL, Grant JA, Greeley R, Haldemann AFC, Kass DM, Parker TJ, Schofield JT, Squyres SW, Zurek RW (2005) Assessment of Mars Exploration Rover landing site predictions. Nature 436:44–48ADSCrossRefGoogle Scholar
  9. Hapke B (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Hook S, Myers J, Thome K, Fitzgerald M, Kahle AB (2001) The MODIS/ASTER Airborne Simulator (MASTER) – a new instrument for earth science studies. Remote Sens Environ 76:93–102CrossRefGoogle Scholar
  11. Jakosky BM (1979) Effects of nonideal surfaces on the derived thermal properties of Mars. J Geophys Res 84:8252–8262ADSCrossRefGoogle Scholar
  12. Kierein KS (1997) The integration of optical and radar data to characterize mineralogy and morphology of surfaces in Death Valley, California, U.S.A. Int J Remote Sensing 18(7):1517–1541ADSCrossRefGoogle Scholar
  13. King MD, Menzel WP, Kaufman YJ, Tanre D, Gao BC, Platnick S, Ackerman SA, Remer LA, Pincus R, Hubanks PA (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Remote Sens 41:442–458ADSCrossRefGoogle Scholar
  14. Li W-H, Weeks RJ, Gillespie AR (1998) Multiple scattering in the remote sensing of natural surfaces. Int J Remote Sens 19:1725–1740CrossRefGoogle Scholar
  15. Mushkin A, Gillespie AR (2005) Estimating sub-pixel surface roughness using remotely sensed stereoscopic data. Remote Sens Environ 99:75–83CrossRefGoogle Scholar
  16. Mushkin A, Gillespie AR (2006) Mapping sub-pixel surface roughness on Mars using high-resolution satellite image data. Geophys Res Lett 33, L18204Google Scholar
  17. Mushkin A, Gillespie AR, O’Neal M, Danilina I, Abbot EA, Balick LK (2006) Using sub-pixel roughness estimates from ASTER stereo images to compensate for roughness effects in the thermal infrared. In: Recent Advances in Quantitative Remote Sensing II. Sobrino JA (ed), Servicio de Publicaciones. Universitat de Valencia. Valencia, Spain, pp 255–260Google Scholar
  18. Mushkin A (2007) Quaternary deformation in the central segment of the Gobi-Altay Fault System, Southwestern Mongolia. In: Earth & Space Sciences, University of Washington, SeattleGoogle Scholar
  19. Neukum G, Jaumann R, Hoffmann H, Hauber E, Head JW, Basilevsky AT, Ivanov BA, Werner SC, van Gasselt S, Murray JB, McCord T (2004) Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. Nature 432:971–979ADSCrossRefGoogle Scholar
  20. Ontar (2001) “PcModWin v 4.0.” North Andover, MA 01845, USAGoogle Scholar
  21. Palluconi FD, Kieffer HH (1981) Thermal inertia mapping of Mars from 60-Degrees-S to 60-Degrees-N. Icarus 45:415–426ADSCrossRefGoogle Scholar
  22. Pinet PC, Cord A, Jehl A, Daydou Y, Chevrel S, Baratoux D, Greeley R, Williams DA, Neukum G (2005) Mars Express Imaging Photometry and surface geologic processes at Mars: what can be monitored within Gusev Crater? Lunar and Planetary Science XXXVI, #1721Google Scholar
  23. Rahman MM, Moran MS, Thoma DP, Bryant R, Holifield Collins CD, Jackson T, Orr BJ, Tischler M (2008) Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sens Environ 112:391–402CrossRefGoogle Scholar
  24. Ramsey MS, Fink JH (1999) Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring. Bull Volcanol 61:32–39ADSCrossRefGoogle Scholar
  25. Sultan M, Arvidson RE, Sturchio NC (1986) Mapping of Serpentinites in the eastern desert of Egypt by using Landsat Thematic Mapper Data. Geology 14:995–999ADSCrossRefGoogle Scholar
  26. Thome K, Arai K, Hook S, Kieffer H, Lang H, Matsunaga T, Ono A, Palluconi F, Sakuma H, Slater P, Takashima T, Tonooka H, Tsuchida S, Welch RM, Zalewski E (1998) ASTER ­preflight and inflight calibration and the validation of level 2 products. IEEE Trans Geosci Remote Sens 36:1161–1172ADSCrossRefGoogle Scholar
  27. Wallace J, Morris B, Howarth P (2006) Identifying structural trend with fractal dimension and topography. Geology 34:901–904ADSCrossRefGoogle Scholar
  28. Weeks RJ, Smith MO, Pak K, Li W-H, Gillespie AR, Gustafson W (1996) Surface roughness, radar backscatter, and visible and near-infrared reflectance in Death Valley, California. J Geophys Res 101(E10):23077–23090ADSCrossRefGoogle Scholar
  29. Weeks RJ, Smith MO, Pak K, Gillespie AR (1997) Inversions of SIR-C and AIRSAR data for the roughness of geological surfaces. Remote Sens Environ 59:383–396CrossRefGoogle Scholar
  30. Yamaguchi Y, Kahle AB, Tsu H, Kawakami H, Pniel M (1998) Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36(4):1062–1071ADSCrossRefGoogle Scholar
  31. Zebker HA, Goldstein RM (1986) Topographic mapping from interferometric synthetic aperture radar observations. J Geophys Res 91(B5):4993–4999ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Geological Survey of IsraelJerusalemIsrael

Personalised recommendations