Skip to main content

Using ASTER Stereo Images to Quantify Surface Roughness

  • Chapter
  • First Online:
Land Remote Sensing and Global Environmental Change

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 11))

Abstract

The unresolved topographic expression of surfaces, surface roughness (SR), is a fundamental surface property that conveys useful information for a wide range of Earth and planetary sciences. Yet, this information is difficult to measure remotely because most spaceborne imagers have resolutions on the order of meters to hundreds of meters and SR can vary significantly below these scales. One way to measure SR is to exploit differential shadowing in stereo images, and in particular, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), with its nadir (3N) and backward-looking (3B) near-infrared channels. We have proposed a simple ratio of land-leaving radiance in those two channels as a measure of relative SR at scales <15 m/pixel. This “two-look” relative SR measure is simple, robust, and insensitive to atmospheric conditions, and thus ASTER 3B/3N ratio images are suggested as a useful and readily accessible tool for photo-interpretation. Moreover, one could calibrate the ratio data to physical parameters, such as RMS height, and translate to SR maps at 15 m/pixel resolution. Two calibration schemes enable this translation: empirical calibration against independent in situ roughness measurements and model-based calibration against forward simulations of ­two-look ratios from very high-resolution (<5 mm) digital elevation models of natural ­surfaces, measured with a ground-based light detection and ranging ­system. Here, we focus on the latter scheme that enables construction of calibration curves for any given viewing and illumination geometries encountered by ASTER. ASTER now ­provides a global archive of images, and the two-look approach with ASTER stereo data enables a unique quantitative mapping capability of SR at 15 m/pixel spatial resolution for almost anywhere on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JB and Gillespie AR (2006) Spectral Remote Sensing of Landscapes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Christensen PR (1986) The spatial distribution of rocks on Mars. Icarus 68:217–238

    Article  ADS  Google Scholar 

  • Combe JP, Adams JB, McCord TB (2006) Mapping geological units on Mars by analyzing the spectral properties of the surface from the Mars-express high resolution stereo camera (HRSC). EOS, Transactions, American Geophysical Union, vol. Fall Meeting Supplement

    Google Scholar 

  • Conel JE, Alley RE (1984) Lisbon Valley, Utah, Uranium Test Site Report. In: The Joint NASA/Geosat Test Case Project, Paley H (ed) AAPG, Tulsa, OK

    Google Scholar 

  • Evans DL, Smith MO (1991) Separation of vegetation and rock signatures in thematic mapper and polarimetric SAR images. Remote Sens Environ 37:63–75

    Article  Google Scholar 

  • Evans DL, Farr TG, van Zyl JJ (1992) Estimates of surface roughness derived from synthetic aperture radar (SAR) data. IEEE Trans Geosci Remote Sens 30(2):382–389

    Article  ADS  Google Scholar 

  • Gillespie AR, Kahle AB, Palluconi FD (1984) Mapping alluvial fans in Death Valley, California, using multispectral thermal infrared images. Geophys Res Lett 11:1153–11556

    Article  ADS  Google Scholar 

  • Golombek MP, Arvidson RE, Bell JF, Christensen PR, Crisp JA, Crumpler LS, Ehlmann BL, Fergason RL, Grant JA, Greeley R, Haldemann AFC, Kass DM, Parker TJ, Schofield JT, Squyres SW, Zurek RW (2005) Assessment of Mars Exploration Rover landing site predictions. Nature 436:44–48

    Article  ADS  Google Scholar 

  • Hapke B (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hook S, Myers J, Thome K, Fitzgerald M, Kahle AB (2001) The MODIS/ASTER Airborne Simulator (MASTER) – a new instrument for earth science studies. Remote Sens Environ 76:93–102

    Article  Google Scholar 

  • Jakosky BM (1979) Effects of nonideal surfaces on the derived thermal properties of Mars. J Geophys Res 84:8252–8262

    Article  ADS  Google Scholar 

  • Kierein KS (1997) The integration of optical and radar data to characterize mineralogy and morphology of surfaces in Death Valley, California, U.S.A. Int J Remote Sensing 18(7):1517–1541

    Article  ADS  Google Scholar 

  • King MD, Menzel WP, Kaufman YJ, Tanre D, Gao BC, Platnick S, Ackerman SA, Remer LA, Pincus R, Hubanks PA (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Remote Sens 41:442–458

    Article  ADS  Google Scholar 

  • Li W-H, Weeks RJ, Gillespie AR (1998) Multiple scattering in the remote sensing of natural surfaces. Int J Remote Sens 19:1725–1740

    Article  Google Scholar 

  • Mushkin A, Gillespie AR (2005) Estimating sub-pixel surface roughness using remotely sensed stereoscopic data. Remote Sens Environ 99:75–83

    Article  Google Scholar 

  • Mushkin A, Gillespie AR (2006) Mapping sub-pixel surface roughness on Mars using high-resolution satellite image data. Geophys Res Lett 33, L18204

    Google Scholar 

  • Mushkin A, Gillespie AR, O’Neal M, Danilina I, Abbot EA, Balick LK (2006) Using sub-pixel roughness estimates from ASTER stereo images to compensate for roughness effects in the thermal infrared. In: Recent Advances in Quantitative Remote Sensing II. Sobrino JA (ed), Servicio de Publicaciones. Universitat de Valencia. Valencia, Spain, pp 255–260

    Google Scholar 

  • Mushkin A (2007) Quaternary deformation in the central segment of the Gobi-Altay Fault System, Southwestern Mongolia. In: Earth & Space Sciences, University of Washington, Seattle

    Google Scholar 

  • Neukum G, Jaumann R, Hoffmann H, Hauber E, Head JW, Basilevsky AT, Ivanov BA, Werner SC, van Gasselt S, Murray JB, McCord T (2004) Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. Nature 432:971–979

    Article  ADS  Google Scholar 

  • Ontar (2001) “PcModWin v 4.0.” North Andover, MA 01845, USA

    Google Scholar 

  • Palluconi FD, Kieffer HH (1981) Thermal inertia mapping of Mars from 60-Degrees-S to 60-Degrees-N. Icarus 45:415–426

    Article  ADS  Google Scholar 

  • Pinet PC, Cord A, Jehl A, Daydou Y, Chevrel S, Baratoux D, Greeley R, Williams DA, Neukum G (2005) Mars Express Imaging Photometry and surface geologic processes at Mars: what can be monitored within Gusev Crater? Lunar and Planetary Science XXXVI, #1721

    Google Scholar 

  • Rahman MM, Moran MS, Thoma DP, Bryant R, Holifield Collins CD, Jackson T, Orr BJ, Tischler M (2008) Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sens Environ 112:391–402

    Article  Google Scholar 

  • Ramsey MS, Fink JH (1999) Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring. Bull Volcanol 61:32–39

    Article  ADS  Google Scholar 

  • Sultan M, Arvidson RE, Sturchio NC (1986) Mapping of Serpentinites in the eastern desert of Egypt by using Landsat Thematic Mapper Data. Geology 14:995–999

    Article  ADS  Google Scholar 

  • Thome K, Arai K, Hook S, Kieffer H, Lang H, Matsunaga T, Ono A, Palluconi F, Sakuma H, Slater P, Takashima T, Tonooka H, Tsuchida S, Welch RM, Zalewski E (1998) ASTER ­preflight and inflight calibration and the validation of level 2 products. IEEE Trans Geosci Remote Sens 36:1161–1172

    Article  ADS  Google Scholar 

  • Wallace J, Morris B, Howarth P (2006) Identifying structural trend with fractal dimension and topography. Geology 34:901–904

    Article  ADS  Google Scholar 

  • Weeks RJ, Smith MO, Pak K, Li W-H, Gillespie AR, Gustafson W (1996) Surface roughness, radar backscatter, and visible and near-infrared reflectance in Death Valley, California. J Geophys Res 101(E10):23077–23090

    Article  ADS  Google Scholar 

  • Weeks RJ, Smith MO, Pak K, Gillespie AR (1997) Inversions of SIR-C and AIRSAR data for the roughness of geological surfaces. Remote Sens Environ 59:383–396

    Article  Google Scholar 

  • Yamaguchi Y, Kahle AB, Tsu H, Kawakami H, Pniel M (1998) Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36(4):1062–1071

    Article  ADS  Google Scholar 

  • Zebker HA, Goldstein RM (1986) Topographic mapping from interferometric synthetic aperture radar observations. J Geophys Res 91(B5):4993–4999

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Mushkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mushkin, A., Gillespie, A. (2010). Using ASTER Stereo Images to Quantify Surface Roughness. In: Ramachandran, B., Justice, C., Abrams, M. (eds) Land Remote Sensing and Global Environmental Change. Remote Sensing and Digital Image Processing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6749-7_20

Download citation

Publish with us

Policies and ethics