Advertisement

ASTER Stereoscopic Data and Digital Elevation Models

  • Thierry Toutin
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)

Abstract

Digital elevation models (DEMs) provide a digital representation of the Earth’s relief, and are used in a variety of applications in geo-spatial analysis. Elevation data as DEMs are required to produce geocoded, orthorectified raster images, which often are incorporated in a geographic information system. The atmospheric, geometric, and radiometric correction of satellite data from optical and microwave instruments also require topographic information. Satellite data-derived DEMs form a vibrant research and development (R&D) topic for the last 30 years since the launch of the first civilian remote sensing satellite (Toutin 2000). Various methods exist to extract DEMs from both active and passive sensor-based satellite data-derived images ­(clinometry, stereoscopy, interferometry, polarimetry, and altimetry).

Keywords

Shuttle Radar Topography Mission Stereo Image Stereo Pair Differential Global Position System Stereo Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackermann F (1994) Digital elevation models-techniques and applications, quality standard. International Archives of Photogrammetry and Remote Sensing 30(4): 421–432Google Scholar
  2. Baker HH, Binford TO (1981) Depth from edge and intensity-based stereo. Proceedings of the Seventh International Joint Conference on Artificial Intelligence, Martin Kaufman Publishers, Vancouver, BC, Canada, (San Diego, USA), 631–636Google Scholar
  3. Bouillon A, Bernard M, Gigord P, Orsoni A, Rudowski V, Beaudoin A (2006) SPOT-5 HRS geometric performances: Using block adjustment as a key issue to improve quality of DEM generation. ISPRS J Photogramm Remote Sensing 60(3):170–181Google Scholar
  4. Clavet D, Lasserre M, Pouliot J (1993) GPS control for 1:50,000-scale topographic mapping from satellite images. Photogramm Eng Remote Sensing 59 (1):107–171Google Scholar
  5. CNES, Centre National d’Etudes Spatiales (1987) SPOT-1: Utilisation des images, bilan, résultats. SPOT-1 Symposium, France, Paris, pp 1163–1392Google Scholar
  6. Colvocoresses AP (1982) An automated mapping satellite system (Mapsat). Photogramm Eng Remote Sensing 48(10):1585–1591Google Scholar
  7. Cuartero A, Quirós E, Felicísimo AM (2005) A study of ASTER DEM accuracies and its dependence of software processing. Proceedings of 6th International Conference on Geomorphology, Zaragoza, Spain, Abstracts Vol. 382, 7–11. Available online at http://www.unex.es/eweb/kraken/pdf/6Geom_05.pdf (accessed March 15, 2009)
  8. Dowman I, Neto F (1994) The accuracy of along-track stereoscopic data for mapping: Results from simulations and JERS OPS. Int Arch Photogramm Remote Sensing 30(4):216–221Google Scholar
  9. ERSDAC (2002) ASTER Level 4A01 Data Products Specifications (GDS Version), Version 1.1, p 65 http://www.gds.aster.ersdac.or.jp/gds_www2002/libraly_e/4adoc/AG-E-E-2211-R031.doc (last accessed March 15, 2009)
  10. ERSDAC (2005) ASTER User’s Guide, Part III, Standard and Semi-standard data products (DEM) (L4A01) Version 1.1, p 21 http://www.science.aster.ersdac.or.jp/en/documnts/users_guide/part1/pdf/Part3D_1.1E.pdf (last accessed March 15, 2009)
  11. Förstner W (1982) On the geometric precision of digital correlation. International Archives of Photogrammetry Helsingfors, Finland, (Helsinki, Finland: ISPRS), 24:(B3), pp. 176–189Google Scholar
  12. Fujisada H (1994) Overview of ASTER instrument on EOS-AM1 platform. Proceedings of SPIEvol. 2268:International Society of Optical Engineering, pp 14–36Google Scholar
  13. Fujisada H, Sakuma F, Ono A, Kudo M (1998) ASTER DEM performance. IEEE Trans Geosci Remote Sensing 36(4):1152–1160ADSCrossRefGoogle Scholar
  14. Fujisada H, Iwasaki A, Hara S (2001) ASTER stereo system performance. Proceedings SPIE: Sensor, System, and next-Generation Satellites V vol. 4540, pp 39–49Google Scholar
  15. Fujisada H, Bailey GB, Kelly GG, Hara S, Abrams MJ (2005) ASTER DEM Performance. IEEE Trans Geosci Remote Sensing 43(12):2707–2713ADSCrossRefGoogle Scholar
  16. Gopala Krishna B, Kartikeyan B, Iyer KV, Mitra R, Srivastava PK (1996) Digital photogrammetric workstation for topographic map updating using IRS-1C stereo imagery. Int Arch Photogramm Remote Sensing 31(B4):481–485Google Scholar
  17. Grün A (1997) Digital photogrammetric stations: A short list of unmatched expectations. Geo Info Magazine 11(1):20–23Google Scholar
  18. Gülch E (1991) Results of test on image matching of ISPRS WG III/4. ISPRS J Photogramm Remote Sensing 46(1):1–8ADSCrossRefGoogle Scholar
  19. Hirano A, Welch R, Lang H (2003) Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J Photogramm Remote Sensing 57(5–6):356–370. http://www.crms.uga.edu/pubs/isprs_aster_2003.pdf (last accessed March 15, 2009)Google Scholar
  20. Iwasaki A, Fujisada H, Tsujimoto S (2001) ASTER geometric performance. Proceedings SPIE: Sensor, System, and next-Generation Satellites V vol. 4540, pp 27–38, 17–20Google Scholar
  21. Iwasaki A, Fujisada H (2005) ASTER geometric performance. IEEE Trans Geosci Remote Sensing 43(12):2700–2706ADSCrossRefGoogle Scholar
  22. Kääb A (2002) Monitoring high-mountains terrain deformation from air- and spaceborne optical data. ISPRS J Photogramm Remote Sensing 57(1–2):39–52ADSCrossRefGoogle Scholar
  23. Kääb A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment 94:463–474CrossRefGoogle Scholar
  24. Lang HR, Welch R (1999) Algorithm Theoretical Basis Document for ASTER Digital Elevation Models (ATBD-AST-08), Version 3.0. Jet Propulsion Laboratory, Pasadena, CA, 63Google Scholar
  25. La Prade G, Briggs SJ, Farrell RJ, Leonardo ES (1966) Stereoscopy. Manual of Photogrammetry (Chapter X), Third Edition, Bethesda, USA, ASPRS, pp 519–544Google Scholar
  26. Maruyama H, Kojiroi R, Ohtsuka T, Shimoyama Y, Hara S, Masaharu H (1994) Three-dimensional measurement by JERS-1 OPS stereo data. Int Arch Photogramm Remote Sensing 30(B4):210–215Google Scholar
  27. O’Neill MA, Dowman IJ (1993) A simulation study of the ASTER sensor using a versatile general purpose rigid sensor modelling system. Int J Remote Sensing 14(3):565–585ADSCrossRefGoogle Scholar
  28. Raggam J, Gutjahr K, Almer A (1997) MOMS-2P und RADARSAT: Neue Sensoren zur stereometrischen Geländemodellerstellung. Vermessung Geoinformatics, Heft 4/97:267–280Google Scholar
  29. Thome K, Arai K, Hook S, Kieffer H, Lang H, Matsunaga T, Ono A, Palluconi F, Sakuma H, Slater P, Takashima T, Tonooka H, Tsuchida S, Welch RM, Zalewski E (1998) ASTER preflight and inflight calibration and the validation of Level 2 products. IEEE Trans Geosci Remote Sens 36(4):1161–1172ADSCrossRefGoogle Scholar
  30. Tokunaga M, Hara S, Miyazaki Y, Kaku M (1996) Overview of DEM product generated by using ASTER data. Int Arch Photogramm Remote Sensing 31(B4):874–878Google Scholar
  31. Toutin T (1983) Analyse mathématique des capacités stéréoscopiques du satellite SPOT. Mémoire de DEA, Ecole Nationale des Sciences Géodésiques, France, 74Google Scholar
  32. Toutin T (1995) Multi-source data fusion with an integrated and unified geometric modelling. EARSeL Adv Remote Sensing 4(2):118–129Google Scholar
  33. Toutin T (2000) Elevation modeling from satellite data. In: Encyclopaedia of analytical chemistry, Meyers R (ed) Wiley,Chichester, UK, vol. 10, pp 8543–8572Google Scholar
  34. Toutin T (2002) 3D topographic mapping with ASTER stereo data in rugged topography. IEEE Trans Geosci Remote Sensing 40(10):2241–2247Google Scholar
  35. Toutin T (2004) Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird. IEEE Trans Geosci Remote Sensing 42(10): 2121–2129Google Scholar
  36. Toutin T (2006) Generation of DSM from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration. ISPRS J Photogramm Remote Sensing 60(3):170–181Google Scholar
  37. Toutin T (2008) ASTER DEM for geomatic and geoscientific applications: a review. Int J Remote Sensing 29(7):1855–1875, DOI:  10.1080/01431160701408477 ADSCrossRefGoogle Scholar
  38. Toutin T, Cheng P (2002) Comparison of automated digital elevation model extraction results using along-track ASTER and across-track SPOT stereo images. Opt Eng 41(9):2102–2106ADSGoogle Scholar
  39. Welch R, Jordan RT, Luvall JC (1990) Geocoding and stereo display of tropical forest multi-sensor datasets. Photogramm Eng Remote Sensing 56(10):1389–1392Google Scholar
  40. Welch R, Lo CP (1977) Height measurements from satellite images. Photogramm Eng Remote Sensing 43(10):1233–1241Google Scholar
  41. Welch R, Jordan T, Lang H, Murakami H (1998) ASTER as a source for topographic data in the late 1990s. IEEE Trans Geosci and Remote Sensing 36(4):1282–1289ADSCrossRefGoogle Scholar
  42. Willard JH (1992) Database blending for the climatology of cloud statistics program. Phillips Laboratory, Hanscom Air Force Base, Massachusetts, Publication PL-TR-92-2344, p 57Google Scholar
  43. Yamaguchi Y, Kahle A, Tsu H, Kawakami T, Pniel M (1998) Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans Geosci Remote Sensing 36(4):1062–1071ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Natural Resources CanadaCanada Centre for Remote SensingOttawaCanada

Personalised recommendations