Monitoring Urban Change with ASTER Data

  • Maik NetzbandEmail author
  • Elisabeth Schöpfer
  • Matthias S. Möller
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)


The appearance of urban areas manifested by human congregation and concentration is a phenomenon characteristic of the development of modern humankind. Historically, every ancient high culture was based on large agglomerations of people (e.g., Angkor Wat, Machu Picchu, Alexandria). Human concentration in urban areas offer a lot of advantages to those in areas with less benefits, especially rural areas. Urban areas provide economic welfare, efficient communication and transportation paths, a dense social and healthcare network, and numerous entertainment opportunities compared to remote and sparsely settled areas. Urban areas today provide home to more than 50% of the people worldwide. Urban areas display strong growth trends, especially in less-developed countries, where a rapid growth of unplanned informal settlements are evident.


Normalize Difference Vegetation Index Impervious Surface Spectral Mixture Analysis Aster Image City Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding was provided by a NASA EOS/ASTER Team Member Investigation grant to P.R. Christensen. Additional funding was provided by a National Science Foundation Long Term Ecological Research grant to N.B. Grimm and C.L. Redman.


  1. Alberti M, Waddell P (2000) An integrated urban development and ecological simulation model. Integr Assess 1:215–227CrossRefGoogle Scholar
  2. Avissar R (1996) Potential effects of vegetation on the urban thermal environment. Atmos Environ 30(3):437–448; Conference on the Urban Thermal Environment Studies in Tohwa, Japan, pp 437–448Google Scholar
  3. Barnsley MJ, Barr SL (2000) Monitoring urban land use by Earth observation. Surv Geophys 21:269–289ADSCrossRefGoogle Scholar
  4. Ben-Dor E (2001) Imaging spectrometry for urban applications. In: Van der Meer FD, De Jong SM (eds) Imaging spectrometry: basic principles and prospective applications. Kluwer, DordrechtGoogle Scholar
  5. Benz U, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258ADSCrossRefGoogle Scholar
  6. Blaschke T, Strobl J (2001) What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. In: Proceedings of GIS – Zeitschrift für Geoinformationsysteme, vol. 6, pp 12–17Google Scholar
  7. Braun M, Herold M (2003) Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn Region (Germany). In: Proceedings of the SPIE 10th International Symposium on Remote Sensing, Barcelona, Spain, 8–12 September 2003Google Scholar
  8. Burnett C, Blaschke T (2003) A multi-scale segmentation/object relationship modelling methodo­logy for landscape analysis. Ecol Model 168(3):233–249CrossRefGoogle Scholar
  9. Buyantuyev A, Brazel A, Eisinger C (2006) Estimating heat fluxes and the Urban Heat Island (UHI) of Phoenix with remote sensing and meteorological data. In: Poster presented at the 8th Annual Central Arizona – Phoenix Long-Term Ecological Research Poster SymposiumGoogle Scholar
  10. Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Environ 5(2):80–88CrossRefGoogle Scholar
  11. Chrysoulakis N (2002) Energy in the urban environment: use of Terra/ASTER imagery as a tool in urban planning. J Indian Soc Remote Sens 30:245–254CrossRefGoogle Scholar
  12. Dousset B, Gourmelon F (2003) Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J Photogramm Remote Sens 58(1–2):43–54; Algorithms and Techniques for Multi-Source Data Fusion in Urban AreasGoogle Scholar
  13. Fukui Y, Hirose Y, Mushiake N (2002) A study on the surface temperature distribution and the urban structure in Tokyo with ASTER and LIDAR data. In: Proceedings of Geoscience and Remote Sensing Symposium (IGARSS’02), vol. 4, pp 24–28Google Scholar
  14. Gluch R, Quattrochi DA, Luvall JC (2006) A multi-scale approach to urban thermal analysis. Remote Sens Environ 104(2):123–132CrossRefGoogle Scholar
  15. Grimm NB, Grove JM, Pickett STA, Redman CL (2008) Integrated approaches to long-term studies of urban ecological systems. In: Marzluff JM, Shulenberger E, Endlicher W, Alberti M, Bradley G, Ryan C, Simon U, ZumBrunnen C (eds) Urban ecology. Springer, New York, pp 123–141CrossRefGoogle Scholar
  16. Grove JM, Cadenasso ML, Burch WR Jr, Pickett ST, Schwarz K, O’Neil-Dunne J, Wilson M, Troy A, Boone C (2006) Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Soc Nat Resour 19:117–136CrossRefGoogle Scholar
  17. Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63(11):2847–2863CrossRefGoogle Scholar
  18. Hartz DA, Prashad L, Hedquist BC, Golden J, Brazel AJ (2006) Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sens Environ 104(2):190–200CrossRefGoogle Scholar
  19. Heiden U, Segl K, Roessner S, Kaufmann H (2007) Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens Environ 111(4):537–552CrossRefGoogle Scholar
  20. Herold M, Scepan J, Clarke KC (2002) The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ Plann A 34(8):1443–1458CrossRefGoogle Scholar
  21. Herold M, Roberts DA, Gardner ME, Dennison PE (2004) Spectrometry for urban area remote sensing – development and analysis of a spectral library from 350 to 2400 nm. Remote Sens Environ 91:304–319CrossRefGoogle Scholar
  22. Hook SJ (1998) ASTER Spectral Library. Available online:
  23. Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. Proc Natl Acad Sci USA 100(15):8788–8792ADSCrossRefGoogle Scholar
  24. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309Google Scholar
  25. Huete A, Justice C, Liu H (1994) Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ 49(3):224–234CrossRefGoogle Scholar
  26. Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc Ecol 22:353–365CrossRefGoogle Scholar
  27. Kato S, Yamaguchi Y (2005) Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sens Environ 99(1–2):44–54Google Scholar
  28. Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol 1:4Google Scholar
  29. Lacherade S, Miesch C, Lemaitre F, Briottet X, Le Men H, Boldo D, Valorge C (2005) Analysis of the spectral variability of urban materials for classification. A case study over Toulouse (France). In: Proceedings of URBAN 2005 and URS 2005, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, Part 8/W27, ISSN 1682-1777 (on CD)Google Scholar
  30. Lang S, Langanke T (2006) Object-based mapping and object-relationship modeling for land use classes and habitats. Photogramm Fernerkund Geoinf 1–2006:5–18Google Scholar
  31. Lu D, Weng Q (2006) Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sens Environ 104(2):157–167CrossRefGoogle Scholar
  32. McGarigal K, Marks BJ (1994) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Oregon State University, CorvallisGoogle Scholar
  33. Möller M (2004) Monitoring long term transition processes of a metropolitan area with remote sensing. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, AKGoogle Scholar
  34. Möller M (2005) Remote sensing for the monitoring of urban growth patterns. In: Proceedings of the International Society for Photogrammetry and Remote Sensing, Joint ConferenceGoogle Scholar
  35. Nakamura M, Hirano Y, Ochi S, Yasuoka Y (2002) Characterization of urban heat radia­tion flux using remote sensing imagery.
  36. Neer JT (1999) High resolution imaging from space – a commercial perspective on a changing landscape. Int Arch Photogramm Remote Sens 32(7C2):132–143Google Scholar
  37. Netzband M, Stefanov WL (2003) Assessment of urban spatial variation using ASTER data. Int Arch Photogramm Remote Sens Spatial Inf Sci 34(7/W9):138–143Google Scholar
  38. Netzband M, Stefanov WL (2004) Urban land cover and spatial variation observations using ASTER and MODIS satellite image data. Int Arch Photogramm Remote Sens Spatial Inf Sci 35(B7):1348–1353Google Scholar
  39. Nichol J, Hang LK, Wai-Shun AY (2003) A comparison of daytime and night-time thermal satellite images of Hong Kong for urban climate studies. In: Proceedings Map Asia 2003.
  40. Ogawa K, Schmugge T, Jacob F, French A (2003) Estimation of land surface window (8–12 mm) emissivity from multispectral thermal infrared remote sensing – a case study in a part of Sahara Desert. Geophys Res Lett 30(2)Google Scholar
  41. Oke TR (1973) City size and the urban heat island. Atmos Environ 7(8):769–779CrossRefGoogle Scholar
  42. Price JC (1995) Examples of high resolution visible to near-infrared reflectance and a standardized collection for remote sensing studies. Int J Remote Sens 16:993–1000CrossRefGoogle Scholar
  43. Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and GIS. CRC, Boca Raton, FL, p 406Google Scholar
  44. Quattrochi DA, Ridd MK (1998) Analysis of vegetation within a semi-arid urban environment using high spatial resolution airborne thermal infrared remote sensing data. Atmos Environ 32(1):19–33; Conference on the Benefits of the Urban ForestCrossRefGoogle Scholar
  45. Rainis R (2003) Application of GIS and landscape metrics in monitoring urban land use change. In: Hashim NM, Rainis R (eds) Urban ecosystem studies in Malaysia – a study of change. Universal Publishers, Parkland, pp 267–278Google Scholar
  46. Ramsey MS (2003) Mapping the city landscape from space: the advanced spaceborne thermal emission and reflectance radiometer (ASTER) urban environmental monitoring program. In: Heiken G, Fakundiny R, Sutter J (eds) Earth science in the city: a reader. American Geophysical Union, Washington, DC, pp 337–361CrossRefGoogle Scholar
  47. Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55(2):95–107CrossRefGoogle Scholar
  48. Roy P, Brumfield JO, Vaseashta A (2007) Smog analysis in urban areas using ASTER data and its analysis of variance with in-situ sensors data. In: Technical Proceedings of the 2007 Nanotechnology Conference and Trade Show, vol. 2Google Scholar
  49. Schmugge TJ, Kustas WP, Humes KS (1998) Monitoring land surface fluxes using ASTER observations. IEEE Trans Geosci Remote Sens 36(5):1421–1430Google Scholar
  50. Schöpfer E, Moeller MS (2006) Comparing metropolitan areas – a transferable object-based image analysis approach. Photogramm Fernerkund Geoinf 1/2006:277–286Google Scholar
  51. Small C (2003) High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens Environ 88:170–186CrossRefGoogle Scholar
  52. Small C, Lu J (2006) Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sens Environ 100:441–456CrossRefGoogle Scholar
  53. Stefanov WL, Netzband M (2005) Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center. Remote Sens Environ 99(1–2):31–43CrossRefGoogle Scholar
  54. Stefanov WL, Netzband M (2010) Characterization and monitoring of urban/peri-urban ecological function and landscape structure using satellite data. In: Rashed T, Jürgens C (eds) Remote sensing of urban and suburban areas. Springer, New YorkGoogle Scholar
  55. Stefanov WL, Ramsey MS, Christensen PR (2001) Monitoring the urban environment: an expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens Environ 77(2):173–185CrossRefGoogle Scholar
  56. Turner MG, O’Neill R, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3:153–162CrossRefGoogle Scholar
  57. Wentz E, Nelson D, Rahman A, Stefanov WL, Roy SS (2008) Expert system classification of urban land use/cover for Delhi, India. Int J Remote Sens 29(15):4405–4427CrossRefGoogle Scholar
  58. Whitford V, Ennos AR, Handley JF (2001) City form and natural process – indicators for the ecological performance of urban areas and their application to Merseyside, UK.. Landsc Urban Plann 57:91–103CrossRefGoogle Scholar
  59. Wu J, Jelinski DE, Luck M, Tueller PT (2000) Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geogr Inf Sci 6:6–19Google Scholar
  60. Yamaguchi Y, Kato S, Okamoto K (2004) Surface heat flux analysis in urban areas using ASTER and MODIS data. In: International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied SciencesGoogle Scholar
  61. Zhu G, Bian F, Zhang M (2003) A flexible method for urban vegetation cover measurement based on remote sensing images. In: Proceedings Joint ISPRS/EARSeL Workshop: High Resolution Mapping from Space 2003, October 6–8Google Scholar
  62. Zipperer WC, Wu J, Pouyat RV, Pickett STA (2000) The application of ecological principles to urban and urbanizing landscapes. Ecol Appl 10(3):685–688CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maik Netzband
    • 1
    Email author
  • Elisabeth Schöpfer
  • Matthias S. Möller
  1. 1.Helmholtz Centre for Environmental Research-UFZLeipzigGermany

Personalised recommendations