Issues Affecting Geological Mapping with ASTER Data: A Case Study of the Mt Fitton Area, South Australia

Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)

Abstract

The minerals industry uses multispectral Advanced Spaceborne Thermal Emission Reflectance Radiometer (ASTER) data for geological mapping with enthusiasm around the world. ASTER represents an advance beyond the capabilities of the 7-band Landsat Thematic Mapper, measuring radiant energy from 14 bands, within the visible-near infrared (VNIR), the shortwave infrared (SWIR), and thermal infrared (TIR) wavelength regions, at spatial resolutions ranging from 15 to 90 m (Yamaguchi et al. 1998). Geologists used ASTER data for its multispectral coverage in the mineralogically significant SWIR wavelength region (Yamaguchi et al. 1998), where OH-bearing and carbonate minerals have diagnostic spectral features (Clark et al. 1990; Grove et al.1992). ASTER also provides multispectral coverage within TIR wavelengths (Yamaguchi et al. 1998), where many other silicates (and carbonates) have diagnostic features (Salisbury and D’Aria 1992).

Keywords

Quartz Silicate Sandstone Calcite Dolomite 

Notes

Acknowledgments

ASTER data products for this case study were gratefully supplied by Japan’s ERSDAC and NASA’s LP DAAC. ERSDAC also provided crosstalk-correction software used for pre-processing level-1B data. Software license support from ERMapper is also gratefully acknowledged for this study. Mike Caccetta of CSIRO provided software and advice for the scatter plot and ASTER data’s SWIR offset analysis. Mt Fitton HyMap data, used as a control for comparative studies, were supplied by the HyVista Corporation. Geological GIS vector information for the Mt Fitton area was obtained from the Geological Survey of South Australia.

References

  1. Abrams M, Hook SJ (1998) Simulated ASTER Data for geologic studies, IEEE Trans Geosci Remote Sens 33(3):692–699.ADSCrossRefGoogle Scholar
  2. Abrams M, Hook S, Ramachandran B (2002) ASTER User Handbook. Version 2, Pasadena, JPL Publication, p. 25.Google Scholar
  3. Clark RN, King TVV, Klejwa M, Swayze G, Vergo N (1990) High spectral resolution reflectance spectroscopy of minerals. J Geophys Res 95:12653–12680.ADSCrossRefGoogle Scholar
  4. Clark RN, Swayze GA, Gallagher A, King TVV, Calvin WM (1993) The USGS Digital Spectral Library: Version 1: 0.2 to 3.0 microns, U.S. Geol. Surv. Open File Rep., 93–592, pp 1340.Google Scholar
  5. Coats RP, Blissett AH (1971) Regional and economic geology of the Mount Painter Province. South Aust Geol Surv Bull 43.Google Scholar
  6. Coats RP, Horwitz RC, Crawford AR, Campana B, Thatcher D (1969) 1:125,000 scale geological map of the Mount Painter Province, Geological Atlas Species Series, Adelaide, Geological Survey of South Australia.Google Scholar
  7. Cocks T, Jenssen R, Stewart WI, Shields T (1998) The HyMap airborne hyperspectral sensor: The system, calibration, and performance. In Proc. of 1st EARSEL Workshop on Imaging Spectroscopy, Zurich, p. 7.Google Scholar
  8. Crowley JK (1986) Visible and near-infrared spectra of carbonate rocks: reflectance variations related to petrographic texture and impurities. J Geophys Res 91(B5):5001–5012.ADSCrossRefGoogle Scholar
  9. Crowley JK, Brickey DW, Rowan LC (1989) Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sens Environ 29:121–134.CrossRefGoogle Scholar
  10. Cudahy TJ, Caccetta M, Cornelius A, Hewson RD, Wells M, Skwarnecki M, Halley S, Hausknecht P, Mason P, Quigley M (2005) Regolith geology and alteration mineral maps from new generation airborne and satellite remote sensing technologies; and Explanatory Notes for the Kalgoorlie-Kanowna 1:100,000 scale map sheet, remote sensing mineral maps. Perth, MERIWA Report No. 252, p. 114.Google Scholar
  11. Cudahy TJ, Hewson RD, Huntington JF, Quigley MA, Barry PS (2001a) The performance of the satellite-borne Hyperion Hyperspectral VNIR-SWIR imaging system for mineral mapping at Mount Fitton, South Australia. In Proc. IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS), Sydney 9–13 July, p. 4.Google Scholar
  12. Cudahy T, Wilson J, Hewson R, Linton P, Harris P, Sears M, Okada K, Hackwell J (2001b) Mapping Porphyry-Skarn Alteration at Yerington, Nevada, Using Airborne Hyperspectral VNIR-SWIR-TIR Imaging Data. IEEE 2001 Int Geosci Remote Sens Symp (IGARSS), 9–13 July, p. 3.Google Scholar
  13. Cudahy TJ, Whitbourn LB, Connor P, Mason P, Phillips RN (1999) Mapping surface mineralogy and scattering behaviour using backscattered reflectance from a hyperspectral mid infrared airborne CO2 laser system (MIRACO2LAS). IEEE Trans Geosci Remote Sens 37(4):2019–2034.ADSCrossRefGoogle Scholar
  14. Denniss A, Huntington J, Hore S (1999) Mount Fitton hyperspectral mineral mapping collaborative project. MESA J 15:12–14.Google Scholar
  15. Duke EF (1994) Near infrared spectra of muscovite. Tschermak substitution and metamorphic reaction process: implications for remote sensing. Geology 22:621–624.ADSCrossRefGoogle Scholar
  16. Gillespie AR, Matsunga T, Rokugawa S, Hook SJ (1998) Temperature and emissivity from advanced spaceborne thermal emission and reflection radiometer. IEEE Trans Geosci Remote Sens 36(4):1113–1126.ADSCrossRefGoogle Scholar
  17. Green AA, Craig MD (1985) Analysis of aircraft spectrometer data with logarithmic residuals. JPL Publication 85–41:111–119.Google Scholar
  18. Grove CI, Hook SJ, Paylor ED II (1992) Laboratory reflectance spectra of 160 minerals, 0.4 to 2.5 micrometers. JPL Publication 92–2.Google Scholar
  19. Hewson RD, Cudahy TJ, Drake-Brockman J, Meyers J, Hashemi A (2006) Mapping geology associated with manganese mineralisation using spectral sensing techniques at Woodie Woodie, East Pilbara. Explor Geophys 37:389–400.CrossRefGoogle Scholar
  20. Hewson RD, Cudahy TJ, Huntington JF (2001) Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data. In IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS), 9–13 July, p. 3.Google Scholar
  21. Hewson RD, Cudahy T, Mizuhiko S, Ueda K, Mauger AJ (2005) Seamless geological map generation using ASTER in the Broken Hill-Curnamona Province of Australia. Remote Sens Environ 99:159–172.CrossRefGoogle Scholar
  22. Hook SJ, Cudahy TJ, Kahle AB, Whitbourn LB (1998) Synergy of active and passive airborne thermal infrared systems for surface compositional mapping. J Geophys Res 103(B8):18, 269–276.Google Scholar
  23. Iwasaki A, Fujisada H (2005) ASTER geometric performance. IEEE Trans Geosci Remote Sens 43(12):2700–2706.ADSCrossRefGoogle Scholar
  24. Iwasaki A, Fujisada H, Akao H, Shindou O, Akagi S (2001) Enhancement of spectral separation performance for ASTER/SWIR. In Proc. of SPIE – The International Society for Optical Engineering, vol. 4486, pp. 42–50.ADSGoogle Scholar
  25. Iwasaki A, Tonooka H (2005) Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans Geosci Remote Sens 43(12):2747–2751.ADSCrossRefGoogle Scholar
  26. Kruse FA, Lefkoff AB, Boardman JB, Heidebreicht KB, Shapiro AT, Barloon PJ (1993) The Spectral Image Processing System SIPS -interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163.CrossRefGoogle Scholar
  27. Ninomiya Y, Fu B, Cudahy TJ (2005) Detecting lithology with advanced spaceborne thermal emission and reflection radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99:127–139.CrossRefGoogle Scholar
  28. Palluconi FD, Meeks GR (1985) Thermal infrared multispectral scanner TIMS: an investigators guide to TIMS data. JPL Publication 85–32.Google Scholar
  29. Rivard B, Arvidson RE, Duncan IJ, Sultan M, El Kailouby B (1992) Varnish, sediment, and rock controls on spectral reflectance of outcrops in arid regions. Geology 20:295–298.ADSCrossRefGoogle Scholar
  30. Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer ASTER data. Remote Sens Environ 84:350–366.CrossRefGoogle Scholar
  31. Rowan LC, Mars JC, Simpson CJ (2005) Lithologic mapping of the Mondor, NT, Australia ultramafic complex by using the ASTER spaceborne thermal emission and reflection radiometer ASTER. Remote Sens Environ 99:105–126.CrossRefGoogle Scholar
  32. Salisbury JW, D’Aria DM (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens Environ 42:83–106.ADSCrossRefGoogle Scholar
  33. Thome K, Palluconi F, Takashima T, Masuda K (1998) Atmospheric correction of ASTER. IEEE Trans Geosci Remote Sens 36(4):1199–1211.ADSCrossRefGoogle Scholar
  34. Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Pniel M (1998) Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36(4):1062–1071.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.CSIRO Exploration and MiningAustralian Resources Research Centre (ARRC)KensingtonAustralia

Personalised recommendations