Skip to main content

Evolution of NASA’s Earth Observing System and Development of the Moderate-Resolution Imaging Spectroradiometer and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Instruments

  • Chapter
  • First Online:
Land Remote Sensing and Global Environmental Change

Abstract

This chapter provides insight into the development and implementation of two key instruments for NASA’s Earth Observing System (EOS): the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). A summary of the basis and evolution of the EOS sets the background and historical context for the development of these two instruments. MODIS and ASTER continue to provide data that improve understanding of the Earth-atmosphere processes and trends in various associated parameters. Additionally, they improve capabilities to monitor the Earth’s natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes WL (1985) Science requirements for a Moderate Resolution Imaging Spectrometer (MODIS) for EOS. Proc. AIAA/NASA Earth Observing System (EOS) Conference, AIAA-85-2085, Virginia Beach, VA, 8–10 Oct.

    Google Scholar 

  • Barnes WL, Salomonson VV (1992) MODIS: a global imaging spectroradiometer for the Earth Observing System. Proc. Critical Review of Optical Technologies for Aerospace Sensing, CR47, pp 1–23, OE/Technology ‘92, Boston, MA, 15–20 Nov.

    Google Scholar 

  • Barnes WL, Salomonson VV (1994) Design and projected performance of MODIS – a moderate resolution imaging spectroradiometer for the Earth Observing System (EOS). Proceedings of International Conference on Applications of Photonic Technology, Toronto, Canada, pp 171–178, 21–23 June.

    Google Scholar 

  • Barnes WL, Xiong X (2002) Early on-orbit calibration results from Aqua MODIS. Fujisada H (ed) Proceedings of SPIE – Sensors, Systems, and Next Generation Satellites VIII, p 4881.

    Google Scholar 

  • Barnes WL, Ostrow H, Salomonson VV (1986) Preliminary system concept for MODIS: moderate resolution imaging spectrometer for EOS. Proc. SPIE Tech. Symp. Southeast on Optics and Optoelectronic Systems, Orlando, FL, Mar 31–Apr 4.

    Google Scholar 

  • Barnes WL, Pagano T, Salomonson VV (1998) Pre-launch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS AM-1. IEEE Trans Geosci Remote Sens 36(4):1088–1100.

    Article  ADS  Google Scholar 

  • Barnes WL, Xiong X, Salomonson VV (2003) Status of Terra MODIS and Aqua MODIS. Adv Space Res 32(11):2099–2106.

    Google Scholar 

  • Butler D (1989) NASA Mail message from the NASA EOS Project Scientist to L. Lincoln, Re: Message from Benn Martin, msg NJIJ-2847–2908, 12 Nov.

    Google Scholar 

  • Esaias WE (1986) Moderate Resolution Imaging Spectrometer (MODIS); MODIS instrument panel report. Earth Observing System Rep Vol. IIb.

    Google Scholar 

  • Fisk L (1989) Letter from NASA Associate Administrator to Anne Kahle, 7 Feb.

    Google Scholar 

  • Fisk L (1992) Letter from NASA Associate Administrator to Anne Kahle, 5 Feb.

    Google Scholar 

  • Gao B-C, Kaufman YJ (1995) Selection of the 1.375 μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J Atmospheric Sci 52(23):4231–4237.

    Article  ADS  Google Scholar 

  • Gillespie A (1985) Lithologic mapping of silicate rocks using TIMS. TIMS Data Users Workshop, JPL Publ. 86–38, 29–44.

    Google Scholar 

  • Gillespie AR, Kahle AB (1977) The construction and interpretation of a digital thermal inertia image. Photogramm Eng Remote Sensing 43:983–1000.

    Google Scholar 

  • Herring D, King M (2001) The encyclopedia of astronomy and astrophysics, IOP Publishing, Macmillan, London.

    Google Scholar 

  • Hook S, Gabell A, Green A, Kealy P (1992) A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sensing Environ 42:123–135.

    Article  Google Scholar 

  • Kääb A, Huggel C, Paul F, Wessels R, Raup B, Kieffer H, Kargel J (2003) Glacier Monitoring from ASTER Imagery: accuracy and applications. Proceedings of EARSeL-LISSIG-Workshop Observing our Cryosphere from Space, Bern, 2002. EARSeL e Proc 2:43–53.

    Google Scholar 

  • Kahle A, Goetz A (1983) Mineralogical information from a new airborne thermal infrared multispectral scanner, Science 222:24–27.

    Article  ADS  Google Scholar 

  • Kahle A, Rowan L (1980) Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the east Tintic mountains, Utah. Geology 8:234–244.

    Article  ADS  Google Scholar 

  • Kahle A, Gillespie A, Goetz A (1976) Thermal inertia imaging: a new geologic mapping tool. Geophys Res Lett 3:26–28.

    Article  ADS  Google Scholar 

  • Kahle A, Palluconi F, Hook S, Realmuto V, Bothwell G (1991) The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Int J Imaging Syst Technol 3:144–156.

    Article  Google Scholar 

  • Kaufman YJ, Gao B-C (1992) Remote-sensing of water vapor in the near-IR from EOS/MODIS. IEEE Trans Geosci Remote Sens 30(5):871–884.

    Article  ADS  Google Scholar 

  • Lang H, Welch R (1999) ATBD-AST-08 Algorithm Theoretical Basis Document for ASTER Digital Elevation Models (Standard Product AST14). http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-14.pdf

  • Magner TJ, Salomonson VV (1991) Moderate Resolution Imaging Spectrometer-Tilt (MODIS-T). Int J Imaging Syst Technol 3:121–130.

    Article  Google Scholar 

  • NASA (1984) Earth Observing System, Science and Mission Working Group Report. Volume 1 (Parts 1 and 2). NASA Technical Memorandum No. 86129, Goddard Space Flight Center, Greenbelt.

    Google Scholar 

  • NASA (1985a) Phase-A study for a Moderate Resolution Imaging Spectrometer-Nadir (MODIS-N). Final Report NAS5-27145.

    Google Scholar 

  • NASA (1985b) Phase-A study for a Moderate Resolution Imaging Spectrometer-Tiltable (MODIS-T). Final Report NAS5-27147.

    Google Scholar 

  • NASA (1989) Moderate Resolution Imaging Spectrometer-Nadir (MODIS-N), Phase-B final report. NAS5-30149.

    Google Scholar 

  • Pielke RA (2000) Policy history of the U.S. Global Change Research Program: part I. Administrative development, Global Environmental Change, 19, 9.

    Google Scholar 

  • Plafcan D (2007) “Trying to Share Separately,” Chapter four in Between State and Transnational Community: U.S.-Japan Technoscientific Diplomacy in Earth Observation. Ph.D. Dissertation, Department of Science and Technology Studies, Cornell University, Ithaca.

    Google Scholar 

  • Realmuto V (1990) Separating the effects of emissivity and temperature: emissivity spectrum normalization, in Proc. 2nd TIMS Workshop, JPL Publ. 90–55.

    Google Scholar 

  • Sabins F (1969) Thermal infrared imagery and its application to structural mapping in southern California. Geol Soc Am Bull 80:397–404.

    Article  Google Scholar 

  • Sakuma F, Ono A, Tsuchida S, Ohgi N, Inada H, Akagi S, Ono H (2005) Onboard calibration of the ASTER instrument. IEEE Trans Geosci Remote Sens 43:2715–2724.

    Article  ADS  Google Scholar 

  • Salomonson VV, Barnes WL, Maymon PW, Montgomery HE, Ostrow H (1989) MODIS: advanced facility instrument for studies of the Earth as a system. IEEE Trans Geosci Remote Sens 27(2).

    Google Scholar 

  • Taubes G (1993) Earth scientists look NASA’s gift horse in the mouth. Science 259:912–914.

    Google Scholar 

  • Tonooka H, Palluconi F, Hook S, Matsunaga T (2005) Vicarious calibration of ASTER thermal infrared bands. IEEE Trans Geosci Remote Sens 43:2733–2746.

    Article  ADS  Google Scholar 

  • Watson K (1975) Geologic applications of thermal infrared images. Proc IEEE 63:128–137.

    Article  Google Scholar 

  • Xiong X, Chiang K, Chen N, Barnes WL (2002a) Aqua MODIS thermal emissive bands pre-launch calibration results and applications. In: Barnes WL (ed) Proceedings Earth Observing Systems VII, SPIE, p 4814.

    Google Scholar 

  • Xiong X, Che N, Adimi F, Barnes WL (2002b) On-orbit spatial characterizations for Terra MODIS. In: Barnes WL (ed) Proceedings Earth Observing Systems VII, SPIE, p 4814.

    Google Scholar 

  • Xiong X, Wu A, Esposito J, Sun J, Che N, Guenther B, Barnes WL (2002c) Trending results of Terra MODIS optics on-orbit degradation. In: Barnes WL (ed) Proceedings Earth Observing Systems VII, SPIE, p 4814.

    Google Scholar 

  • Xiong X, Sun J, Barnes WL (2002d) MODIS on-orbit characterization using the Moon. In: Fujisada H (ed) Proceedings of SPIE – Sensors, Systems, and Next Generation Satellites VIII, p 4881.

    Google Scholar 

  • Xiong X, Sun J, Esposito J, Guenther B, Barnes WL (2002e) MODIS reflective solar bands calibration algorithm and on-orbit performance. Proceedings Asia-Pacific Symposium on Remote Sensing of the Atmosphere and Clouds III, 4891.

    Google Scholar 

  • Xiong X, Chiang K, Guenther B, Barnes WL (2002f) MODIS thermal emissive bands calibration algorithm and on-orbit performance. Proceedings Asia-Pacific Symposium on Remote Sensing of the Atmosphere and Clouds III, 4891.

    Google Scholar 

  • Xiong X, Chiang K, Esposito J, Guenther B, Barnes WL (2003a) MODIS on-orbit calibration and characterization. Metrologia 40:89–92.

    Article  ADS  Google Scholar 

  • Xiong X, Barnes WL, Guenther B, Murphy RE (2003b) Lessons learned from MODIS. Adv Space Res 32(11):2107–2112.

    Article  ADS  Google Scholar 

  • Yamaguchi Y, Sato I, Tsu H (1992) ITIR design concept and science missions. In: Gille JC, Visconti G (eds) The Use of EOS for Studies of Atmospheric Physics, 229–310, North-Holland Elsevier Science Publications, Amsterdam.

    Google Scholar 

Download references

Acknowledgments

Hundreds, perhaps thousands, of people worked diligently to ensure the success of EOS, MODIS, and ASTER. Although, it is not possible here to acknowledge the contributions of all the individuals involved, the scientific community (especially the MODIS and ASTER) acknowledge and salute all those who contributed to the success achieved. Work done by Abrams was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Salomonson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Salomonson, V., Abrams, M.J., Kahle, A., Barnes, W., Xiong, X., Yamaguchi, Y. (2010). Evolution of NASA’s Earth Observing System and Development of the Moderate-Resolution Imaging Spectroradiometer and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Instruments. In: Ramachandran, B., Justice, C., Abrams, M. (eds) Land Remote Sensing and Global Environmental Change. Remote Sensing and Digital Image Processing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6749-7_1

Download citation

Publish with us

Policies and ethics