Evolution of NASA’s Earth Observing System and Development of the Moderate-Resolution Imaging Spectroradiometer and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Instruments

  • Vincent Salomonson
  • Michael J. Abrams
  • Anne Kahle
  • William Barnes
  • Xiaoxiong Xiong
  • Yasushi Yamaguchi
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 11)

Abstract

This chapter provides insight into the development and implementation of two key instruments for NASA’s Earth Observing System (EOS): the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). A summary of the basis and evolution of the EOS sets the background and historical context for the development of these two instruments. MODIS and ASTER continue to provide data that improve understanding of the Earth-atmosphere processes and trends in various associated parameters. Additionally, they improve capabilities to monitor the Earth’s natural resources.

References

  1. Barnes WL (1985) Science requirements for a Moderate Resolution Imaging Spectrometer (MODIS) for EOS. Proc. AIAA/NASA Earth Observing System (EOS) Conference, AIAA-85-2085, Virginia Beach, VA, 8–10 Oct.Google Scholar
  2. Barnes WL, Salomonson VV (1992) MODIS: a global imaging spectroradiometer for the Earth Observing System. Proc. Critical Review of Optical Technologies for Aerospace Sensing, CR47, pp 1–23, OE/Technology ‘92, Boston, MA, 15–20 Nov.Google Scholar
  3. Barnes WL, Salomonson VV (1994) Design and projected performance of MODIS – a moderate resolution imaging spectroradiometer for the Earth Observing System (EOS). Proceedings of International Conference on Applications of Photonic Technology, Toronto, Canada, pp 171–178, 21–23 June.Google Scholar
  4. Barnes WL, Xiong X (2002) Early on-orbit calibration results from Aqua MODIS. Fujisada H (ed) Proceedings of SPIE – Sensors, Systems, and Next Generation Satellites VIII, p 4881.Google Scholar
  5. Barnes WL, Ostrow H, Salomonson VV (1986) Preliminary system concept for MODIS: moderate resolution imaging spectrometer for EOS. Proc. SPIE Tech. Symp. Southeast on Optics and Optoelectronic Systems, Orlando, FL, Mar 31–Apr 4.Google Scholar
  6. Barnes WL, Pagano T, Salomonson VV (1998) Pre-launch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS AM-1. IEEE Trans Geosci Remote Sens 36(4):1088–1100.ADSCrossRefGoogle Scholar
  7. Barnes WL, Xiong X, Salomonson VV (2003) Status of Terra MODIS and Aqua MODIS. Adv Space Res 32(11):2099–2106.Google Scholar
  8. Butler D (1989) NASA Mail message from the NASA EOS Project Scientist to L. Lincoln, Re: Message from Benn Martin, msg NJIJ-2847–2908, 12 Nov.Google Scholar
  9. Esaias WE (1986) Moderate Resolution Imaging Spectrometer (MODIS); MODIS instrument panel report. Earth Observing System Rep Vol. IIb.Google Scholar
  10. Fisk L (1989) Letter from NASA Associate Administrator to Anne Kahle, 7 Feb.Google Scholar
  11. Fisk L (1992) Letter from NASA Associate Administrator to Anne Kahle, 5 Feb.Google Scholar
  12. Gao B-C, Kaufman YJ (1995) Selection of the 1.375 μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J Atmospheric Sci 52(23):4231–4237.ADSCrossRefGoogle Scholar
  13. Gillespie A (1985) Lithologic mapping of silicate rocks using TIMS. TIMS Data Users Workshop, JPL Publ. 86–38, 29–44.Google Scholar
  14. Gillespie AR, Kahle AB (1977) The construction and interpretation of a digital thermal inertia image. Photogramm Eng Remote Sensing 43:983–1000.Google Scholar
  15. Herring D, King M (2001) The encyclopedia of astronomy and astrophysics, IOP Publishing, Macmillan, London.Google Scholar
  16. Hook S, Gabell A, Green A, Kealy P (1992) A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sensing Environ 42:123–135.CrossRefGoogle Scholar
  17. Kääb A, Huggel C, Paul F, Wessels R, Raup B, Kieffer H, Kargel J (2003) Glacier Monitoring from ASTER Imagery: accuracy and applications. Proceedings of EARSeL-LISSIG-Workshop Observing our Cryosphere from Space, Bern, 2002. EARSeL e Proc 2:43–53.Google Scholar
  18. Kahle A, Goetz A (1983) Mineralogical information from a new airborne thermal infrared multispectral scanner, Science 222:24–27.ADSCrossRefGoogle Scholar
  19. Kahle A, Rowan L (1980) Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the east Tintic mountains, Utah. Geology 8:234–244.ADSCrossRefGoogle Scholar
  20. Kahle A, Gillespie A, Goetz A (1976) Thermal inertia imaging: a new geologic mapping tool. Geophys Res Lett 3:26–28.ADSCrossRefGoogle Scholar
  21. Kahle A, Palluconi F, Hook S, Realmuto V, Bothwell G (1991) The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Int J Imaging Syst Technol 3:144–156.CrossRefGoogle Scholar
  22. Kaufman YJ, Gao B-C (1992) Remote-sensing of water vapor in the near-IR from EOS/MODIS. IEEE Trans Geosci Remote Sens 30(5):871–884.ADSCrossRefGoogle Scholar
  23. Lang H, Welch R (1999) ATBD-AST-08 Algorithm Theoretical Basis Document for ASTER Digital Elevation Models (Standard Product AST14). http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-14.pdf
  24. Magner TJ, Salomonson VV (1991) Moderate Resolution Imaging Spectrometer-Tilt (MODIS-T). Int J Imaging Syst Technol 3:121–130.CrossRefGoogle Scholar
  25. NASA (1984) Earth Observing System, Science and Mission Working Group Report. Volume 1 (Parts 1 and 2). NASA Technical Memorandum No. 86129, Goddard Space Flight Center, Greenbelt.Google Scholar
  26. NASA (1985a) Phase-A study for a Moderate Resolution Imaging Spectrometer-Nadir (MODIS-N). Final Report NAS5-27145.Google Scholar
  27. NASA (1985b) Phase-A study for a Moderate Resolution Imaging Spectrometer-Tiltable (MODIS-T). Final Report NAS5-27147.Google Scholar
  28. NASA (1989) Moderate Resolution Imaging Spectrometer-Nadir (MODIS-N), Phase-B final report. NAS5-30149.Google Scholar
  29. Pielke RA (2000) Policy history of the U.S. Global Change Research Program: part I. Administrative development, Global Environmental Change, 19, 9.Google Scholar
  30. Plafcan D (2007) “Trying to Share Separately,” Chapter four in Between State and Transnational Community: U.S.-Japan Technoscientific Diplomacy in Earth Observation. Ph.D. Dissertation, Department of Science and Technology Studies, Cornell University, Ithaca.Google Scholar
  31. Realmuto V (1990) Separating the effects of emissivity and temperature: emissivity spectrum normalization, in Proc. 2nd TIMS Workshop, JPL Publ. 90–55.Google Scholar
  32. Sabins F (1969) Thermal infrared imagery and its application to structural mapping in southern California. Geol Soc Am Bull 80:397–404.CrossRefGoogle Scholar
  33. Sakuma F, Ono A, Tsuchida S, Ohgi N, Inada H, Akagi S, Ono H (2005) Onboard calibration of the ASTER instrument. IEEE Trans Geosci Remote Sens 43:2715–2724.ADSCrossRefGoogle Scholar
  34. Salomonson VV, Barnes WL, Maymon PW, Montgomery HE, Ostrow H (1989) MODIS: advanced facility instrument for studies of the Earth as a system. IEEE Trans Geosci Remote Sens 27(2).Google Scholar
  35. Taubes G (1993) Earth scientists look NASA’s gift horse in the mouth. Science 259:912–914.Google Scholar
  36. Tonooka H, Palluconi F, Hook S, Matsunaga T (2005) Vicarious calibration of ASTER thermal infrared bands. IEEE Trans Geosci Remote Sens 43:2733–2746.ADSCrossRefGoogle Scholar
  37. Watson K (1975) Geologic applications of thermal infrared images. Proc IEEE 63:128–137.CrossRefGoogle Scholar
  38. Xiong X, Chiang K, Chen N, Barnes WL (2002a) Aqua MODIS thermal emissive bands pre-launch calibration results and applications. In: Barnes WL (ed) Proceedings Earth Observing Systems VII, SPIE, p 4814.Google Scholar
  39. Xiong X, Che N, Adimi F, Barnes WL (2002b) On-orbit spatial characterizations for Terra MODIS. In: Barnes WL (ed) Proceedings Earth Observing Systems VII, SPIE, p 4814.Google Scholar
  40. Xiong X, Wu A, Esposito J, Sun J, Che N, Guenther B, Barnes WL (2002c) Trending results of Terra MODIS optics on-orbit degradation. In: Barnes WL (ed) Proceedings Earth Observing Systems VII, SPIE, p 4814.Google Scholar
  41. Xiong X, Sun J, Barnes WL (2002d) MODIS on-orbit characterization using the Moon. In: Fujisada H (ed) Proceedings of SPIE – Sensors, Systems, and Next Generation Satellites VIII, p 4881.Google Scholar
  42. Xiong X, Sun J, Esposito J, Guenther B, Barnes WL (2002e) MODIS reflective solar bands calibration algorithm and on-orbit performance. Proceedings Asia-Pacific Symposium on Remote Sensing of the Atmosphere and Clouds III, 4891.Google Scholar
  43. Xiong X, Chiang K, Guenther B, Barnes WL (2002f) MODIS thermal emissive bands calibration algorithm and on-orbit performance. Proceedings Asia-Pacific Symposium on Remote Sensing of the Atmosphere and Clouds III, 4891.Google Scholar
  44. Xiong X, Chiang K, Esposito J, Guenther B, Barnes WL (2003a) MODIS on-orbit calibration and characterization. Metrologia 40:89–92.ADSCrossRefGoogle Scholar
  45. Xiong X, Barnes WL, Guenther B, Murphy RE (2003b) Lessons learned from MODIS. Adv Space Res 32(11):2107–2112.ADSCrossRefGoogle Scholar
  46. Yamaguchi Y, Sato I, Tsu H (1992) ITIR design concept and science missions. In: Gille JC, Visconti G (eds) The Use of EOS for Studies of Atmospheric Physics, 229–310, North-Holland Elsevier Science Publications, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vincent Salomonson
    • 1
  • Michael J. Abrams
  • Anne Kahle
  • William Barnes
  • Xiaoxiong Xiong
  • Yasushi Yamaguchi
  1. 1.NASA Goddard Space Flight Center (Emeritus)University of UtahGreenbeltUSA

Personalised recommendations