Radiation Biology of Tumor and Normal Tissues

  • Herman D. Suit
  • Jay S. Loeffler


For the new department, the trustees wanted a program in laboratory research on the effects of radiation on animal cells and tissues, normal and malignant, and the whole organism.


Lymphatic Vessel Radiation Oncology SCID Mouse Hypoxic Cell Postdoctoral Fellow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allam A, Gioioso D, Taghian A, et al. Intrinsic radiation sensitivity: no correlation with the metastatic potential of human and murine tumor cell lines. J Natl Cancer Inst. 1993;85(23):1954–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Au P, Daheron LM, Duda DG, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood. 2008;111(3):1302–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Au P, Tam J, Fukumura D, et al. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008;111(9):4551–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Baumann M, Suit HD, Sedlacek RS. Metastases after fractionated radiation therapy of three murine tumor models. Int J Radiat Oncol Biol Phys. 1990;19(2):367–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 2007;8(5):444–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Bockhorn M, Roberge S, Sousa C, et al. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer Res. 2004;64(7):2469–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Boucher Y, Kirkwood JM, Opacic D, et al. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 1991;51(24):6691–4.PubMedGoogle Scholar
  9. 9.
    Boucher Y, Lee I, Jain RK. Lack of general correlation between interstitial fluid pressure and oxygen partial pressure in solid tumors. Microvasc Res. 1995;50(2):175–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Boucher Y, Leunig M, Jain RK. Tumor angiogenesis and interstitial hypertension. Cancer Res. 1996;56(18):4264–6.PubMedGoogle Scholar
  11. 11.
    Brown E, McKee T, diTomaso E, et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med. 2003;9(6):796–800.PubMedCrossRefGoogle Scholar
  12. 12.
    Brown EB, Campbell RB, Tsuzuki Y, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 2001;7(7):864–8. Erratum in: Nat Med. 2001;7(9):1069.PubMedCrossRefGoogle Scholar
  13. 13.
    Budach W, Taghian A, Freeman J, et al. Impact of stromal sensitivity on radiation response of tumors. J Natl Cancer Inst. 1993;85(12):988–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen Y, Taghian AG, Rosenberg AE, et al. Predictive value of histologic tumor necrosis after radiation. Int J Cancer. 2001;96(6):334–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Choi CH, Sedlacek RS, Suit HD. Radiation-induced osteogenic sarcoma of C3H mouse: effects of Corynebacterium parvum and WBI on its natural history and response to irradiation. Eur J Cancer. 1979;15(4):433–42.PubMedGoogle Scholar
  16. 16.
    Clark EP, Michaels HB, Peterson EC, et al. Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates. Radiat Res. 1983;93(3):479–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Dahm-Daphi J, Hubbe P, Horvath F, et al. Nonhomologous end-joining of site-specific but not of radiation-induced DNA double-strand breaks is reduced in the presence of wild-type p53. Oncogene. 2005;24(10):1663–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Dewey WC, Hopwood LE, Sapareto SA, et al. Cellular responses to combinations of hyperthermia and radiation. Radiology. 1977;123(2):463–74.PubMedGoogle Scholar
  19. 19.
    di Tomaso E, Capen D, Haskell A, et al. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Res. 2005;65(13):5740–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Duda DG, Batchelor TT, Willett CG, et al. VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol Med. 2007;13(6):223–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Duda DG, Cohen KS, Kozin SV, et al. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood. 2006;107(7):2774–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Duda DG, Fukumura D, Munn LL, et al. Differential transplantability of tumor-associated stromal cells. Cancer Res. 2004;64(17):5920–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Epp ER, Weiss H, Santomasso A. The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Radiat Res. 1968;34(2):320–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA. 2001;98(5):2604–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521–34. Review.PubMedCrossRefGoogle Scholar
  26. 26.
    Fukumura D, Ushiyama A, Duda DG, et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res. 2003;93(9):e88–97. Erratum in: Circ Res. 2004;94(1):e16. Circ Res. 2005;96(9):e76.PubMedCrossRefGoogle Scholar
  27. 27.
    Fukumura D, Xavier R, Sugiura T, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998;94(6):715–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 2001;61(16):6020–4.PubMedGoogle Scholar
  29. 29.
    Fukumura D, Yuan F, Endo M, et al. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am J Pathol. 1997;150(2):713–25.PubMedGoogle Scholar
  30. 30.
    Garkavtsev I, Kozin SV, Chernova O, et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature. 2004;428(6980):328–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Gerweck LE, Gillette EL, Dewey WC. Killing of Chinese hamster cells in vitro by heating under hypoxic or aerobic conditions. Eur J Cancer. 1974;10(10):691–3.PubMedGoogle Scholar
  32. 32.
    Gerweck LE, Gillette EL, Dewey WC. Effect of heat and radiation on synchronous Chinese hamster cells: killing and repair. Radiat Res. 1975;64(3):611–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Gerweck LE, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther. 2006;5(5):1275–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Gerweck LE, Vijayappa S, Kurimasa A, et al. Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res. 2006;66(17):8352–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Griffon-Etienne G, Boucher Y, Brekken C, Jain RK, Suit HD. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 1999;59(15):3776–82.PubMedGoogle Scholar
  36. 36.
    Hagendoorn J, Padera TP, Kashiwagi S, et al. Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics. Circ Res. 2004;95(2):204–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Halperin EC, Haas G, Dosoretz DE, et al. 1982 resident’s essay award: the immunologic effects of lymphoid irradiation in human and non-human primates: cellular changes and the potential for renal transplantation. Int J Radiat Oncol Biol Phys. 1983;9(7):1083–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Held KD, Epp ER, Awad S, et al. Post irradiation sensitization of mammalian cells by the thiol-depleting agent dimethyl fumarate. Radiat Res. 1991;127(1):75–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Held KD, Epp ER, Clark EP, et al. Effect of dimethyl fumarate on the radiation sensitivity of mammalian cells in vitro. Radiat Res. 1988;115(3):495–502.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoshida T, Isaka N, Hagendoorn J, et al. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res. 2006;66(16):8065–75.PubMedCrossRefGoogle Scholar
  41. 41.
    Huang P, Allam A, Taghian A, et al. Growth and metastatic behavior of five human glioblastomas compared with nine other histological types of human tumor xenografts in SCID mice. J Neurosurg. 1995;83(2):308–15.PubMedCrossRefGoogle Scholar
  42. 42.
    Huang P, Taghian A, Hsu DW, et al. Spontaneous metastasis, proliferation characteristics and radiation sensitivity of fractionated irradiation recurrent and unirradiated human xenografts. Radiother Oncol. 1996;41:73–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416(6878):279–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7(9):987–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Jain RK. Taming vessels to treat cancer. Sci Am. 2008;298(1):56–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Jain RK, di Tomaso E, Duda DG, et al. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Jain RK, Duda DG. Role of bone marrow-derived cells in tumor angiogenesis and treatment. Cancer Cell. 2003;3(6):515–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Kamoun WS, Dan Ley C, Farrar CT, et al. Edema control by cediranib, a VEGF targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;27:2542–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Kashiwagi S, Izumi Y, Gohongi T, et al. NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest. 2005;115:1816–27.PubMedCrossRefGoogle Scholar
  50. 50.
    Kashiwagi S, Tsukada K, Xu L, et al. Perivascular nitric oxide gradients normalize tumor vasculature. Nat Med. 2008;14(3):255–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Kirsch DG, Dinulescu DM, Miller JB, et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med. 2007;13(8):992–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004;428(6979):138–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Kozin SV, Niemierko A, Huang P, Silva J, Doppke KP, Suit HD. Inter- and intramouse heterogeneity of radiation response for a growing paired organ. Radiat Res. 2008;170(2):264–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Kozin SV, Winkler F, Garkavtsev I, et al. Human tumor xenografts recurring after radiotherapy are more sensitive to anti-vascular endothelial growth factor receptor-2 treatment than treatment-naive tumors. Cancer Res. 2007;67(11):5076–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Lahdenranta J, Hagendoorn J, Padera TP, et al.  Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis. Cancer Res. 2009;69:2801–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee CG, Heijn M, diTomaso E, et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 2000;60:5565–70.PubMedGoogle Scholar
  57. 57.
    Ling CC, Michaels HB, Epp ER, et al. Oxygen diffusion into mammalian cells following ultrahigh dose rate irradiation and lifetime estimates of oxygen-sensitive species. Radiat Res. 1978;76(3):522–32.PubMedCrossRefGoogle Scholar
  58. 58.
    McDonald J, Pinkerton A, Weiss H, et al. Dosimetry for thin biological samples irradiated by nanosecond electron pulses of high intensity. Radiat Res. 1972;49(3):495–506.PubMedCrossRefGoogle Scholar
  59. 59.
    McKee TD, Grandi P, Mok W, et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 2006;66(5):2509–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Michaels HB, Ling CC, Epp ER, et al. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates. Radiat Res. 1981;85(3):567–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Michaels HB, Peterson EC, Epp ER. Effects of modifiers of the yield of hydroxyl radicals on the radiosensitivity of mammalian cells at ultrahigh dose rates. Radiat Res. 1983;95(3):620–36.PubMedCrossRefGoogle Scholar
  62. 62.
    Mok W, Boucher Y, Jain RK. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 2007;67(22):10664–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Munn LL, Dupin MM. Blood cell interactions and segregation in flow. Ann Biomed Eng. 2008;36(4):534–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Nagano S, Perentes JY, Jain RK, Boucher Y. Cancer cell death enhances the penetration and efficacy of oncolytic herpes simplex virus in tumors. Cancer Res. 2008;68(10): 3795–802.PubMedCrossRefGoogle Scholar
  65. 65.
    Nelson GM, Padera TP, Garkavtsev I, et al. Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia. 2007;9(12):1038–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Ogawa K, Boucher Y, Kashiwagi S, et al. Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res. 2007;67(9):4016–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Okunieff PG, Koutcher JA, Gerweck L, et al. Tumor size dependent changes in a murine fibrosarcoma: use of in vivo 31P NMR for non-invasive evaluation of tumor metabolic status. Int J Radiat Oncol Biol Phys. 1986;12(5):793–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Overgaard J, Suit HD. Time-temperature relationship in hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res. 1979;39(8):3248–53.PubMedGoogle Scholar
  69. 69.
    Padera TP, Kadambi A, diTomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science. 2002;296(5574):1883–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Padera TP, Stoll BR, So PT, Jain RK. Conventional and high-speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol Imaging. 2002;1(1):9–15.PubMedCrossRefGoogle Scholar
  71. 71.
    Padera TP, Stoll BR, Tooredman JB, et al. Pathology: cancer cells compress intratumour vessels. Nature. 2004;427(6976):695.PubMedCrossRefGoogle Scholar
  72. 72.
    Pluen A, Boucher Y, Ramanujan S, et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA. 2001;98(8):4628–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6(7): 520–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Ramsay J, Suit HD, Sedlacek R. Experimental studies on the incidence of metastases after failure of radiation treatment and the effect of salvage surgery. Int J Radiat Oncol Biol Phys. 1988;14(6):1165–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Roh HD, Boucher Y, Kalnicki S, et al. Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res. 1991;51(24):6695–8.PubMedGoogle Scholar
  76. 76.
    Romanova LY, Willers H, Blagosklonny MV, Powell SN. The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene. 2004;23(56):9025–33.PubMedCrossRefGoogle Scholar
  77. 77.
    Rottinger EM, Sedlacek R, Suit HD. Ineffectiveness of anticoagulation in experimental radiation therapy. Eur J Cancer. 1975;11(10):743–9.PubMedGoogle Scholar
  78. 78.
    Ruka W, Taghian A, Gioioso D, et al. Comparison between the in vitro intrinsic radiation sensitivity of human soft tissue sarcoma and breast cancer cell lines. J Surg Oncol. 1996;61(4):290–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Sedlacek R, Mason K. A simple and inexpensive method for maintaining a defined flora mouse colony. Lab Anim Sci. 1977;27(5 Pt 1):667–70.PubMedGoogle Scholar
  80. 80.
    Schulte-Uentrop L, El-Awady RA, Schliecker L, Willers H, Dahm-Daphi J. Distinct roles of XRCC4 and Ku80 in non-homologous end-joining of endonuclease- and ionizing radiation-induced DNA double-strand breaks. Nucleic Acids Res. 2008;36(8):2561–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Shao C, Folkard M, Held KD, Prise KM. Estrogen enhanced cell-cell signaling in breast cancer cells exposed to targeted irradiation. BMC Cancer. 2008;8:184.PubMedCrossRefGoogle Scholar
  82. 82.
    Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem. 2005;77(3):933–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Silobrcic V, Zietman AL, Ramsay JR, et al. Residual immunity of athymic NCr/Sed nude mice and the xenotransplantation of human tumors. Int J Cancer. 1990;45(2):325–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Stroh M, Zimmer JP, Duda DG, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med. 2005;11(6):678–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Suit HD, Gallager HS. Intact tumor cells in irradiated tissue. Arch Pathol. 1964;78:648–51.PubMedGoogle Scholar
  86. 86.
    Suit HD, Sedlacek R, Silver G, et al. Therapeutic gain factors for fractionated radiation treatment of spontaneous murine tumors using fast neutrons, photons plus O2(1) or 3 ATA, or photons plus misonidazole. Radiat Res. 1988;116(3):482–502.PubMedCrossRefGoogle Scholar
  87. 87.
    Sun C, Jain RK, Munn LL. Non-uniform plasma leakage affects local hematocrit and blood flow: implications for inflammation and tumor perfusion. Ann Biomed Eng. 2007;35(12):2121–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Taghian A, Budach W, Zietman A, et al. Quantitative comparison between the transplantability of human and murine tumors into the brain of NCr/Sed-nu/nu nude and severe combined immunodeficient mice. Cancer Res. 1993;53(20):5018–21.PubMedGoogle Scholar
  89. 89.
    Tang W, Willers H, Powell SN. p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res. 1999;59(11):2562–5.PubMedGoogle Scholar
  90. 90.
    Todoroki T, Suit HD. Therapeutic advantage in preoperative single-dose radiation combined with conservative and radical surgery in different-size murine fibrosarcomas. J Surg Oncol. 1985;29(4):207–15.PubMedCrossRefGoogle Scholar
  91. 91.
    Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64(11):3731–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 2000;60(22):6248–52.PubMedGoogle Scholar
  93. 93.
    Tyrrell JA, di Tomaso E, Fuja D, et al. Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans Med Imaging. 2007;26(2):223–37.PubMedCrossRefGoogle Scholar
  94. 94.
    Urano M, Goitein M, Verhey L, et al. Relative biological effectiveness of a high energy modulated proton beam using a spontaneous murine tumor in vivo. Int J Radiat Oncol Biol Phys.Google Scholar
  95. 95.
    Urano M, Kahn J, Kenton LA. Thermochemotherapy (combined cyclophosphamide and hyperthermia) with or without hyperglycemia as an adjuvant to radiotherapy. Int J RadiatGoogle Scholar
  96. 96.
    Urano M, Overgaard M, Suit H, Dunn P, Sedlacek R. Enhancement by Corynebacterium parvum of the normal and tumor tissue response to hyperthermia. Cancer Res. 1978;38(3):862–4. 1980;6(9):1187–93.PubMedGoogle Scholar
  97. 97.
    Urano M, Verhey LJ, Goitein M, et al. Relative biological effectiveness of modulated proton beams in various murine tissues. Int J Radiat Oncol Biol Phys. 1984;10(4):509–14. Oncol Biol Phys. 1986;12(1):45–50.PubMedCrossRefGoogle Scholar
  98. 98.
    Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol. 2007;25(3):317–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Willers H, Husson J, Lee LW, et al. Distinct mechanisms of non-homologous end joining in the repair of site-directed chromosomal breaks with non-complementary and complementary ends. Radiat Res. 2006;166(4):567–74.PubMedCrossRefGoogle Scholar
  101. 101.
    Willers H, Kachnic LA, Luo CM, et al. Biomarkers and mechanisms of FANCD2 function. J Biomed Biotechnol. 2008;2008:821529.PubMedGoogle Scholar
  102. 102.
    Willers H, McCarthy EE, Wu B, et al. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene. 2000;19(5):632–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10(2):145–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Willett CG, Urano M, Suit HD, et al. Effect of temperature on blood flow and hypoxic fraction in a murine fibrosarcoma. Int J Radiat Oncol Biol Phys. 1987;13(9):1309–12.PubMedCrossRefGoogle Scholar
  105. 105.
    Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6(6):553–63.PubMedGoogle Scholar
  106. 106.
    Xia F, Taghian DG, DeFrank JS, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci USA. 2001;98(15):8644–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Xu L, Fukumura D, Jain RK. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J Biol Chem. 2002;277(13):11368–74.PubMedCrossRefGoogle Scholar
  108. 108.
    Xu L, Jain RK. Down-regulation of placenta growth factor by promoter hypermethylation in human lung and colon carcinoma. Mol Cancer Res. 2007;5(9):873–80.PubMedCrossRefGoogle Scholar
  109. 109.
    Xu L, Tong R, Cochran DM, et al. Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotopic mouse model. Cancer Res. 2005;65(13):5711–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Yang H, Anzenberg V, Held KD. The time dependence of bystander responses induced by iron-ion radiation in normal human skin fibroblasts. Radiat Res. 2007;168(3):292–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Yang H, Asaad N, Held KD. Medium-mediated intercellular communication is involved in bystander responses of X-ray irradiated normal human fibroblasts. Oncogene. 2005;24(12): 2096–103.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang J, Willers H, Feng Z, et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol. 2004;24(2):708–18.PubMedCrossRefGoogle Scholar
  113. 113.
    Zietman AL, Suit HD, Okunieff PG, et al. The life shortening effects of treatment with doxorubicin and/or local irradiation on a cohort of young C3Hf/Sed mice. Eur J Cancer. 1991;27(6): 778–81.PubMedCrossRefGoogle Scholar
  114. 114.
    Zietman AL, Suit HD, Ramsay JR, et al. Quantitative studies on the transplantability of murine and human tumors into the brain and subcutaneous tissues of NCr/Sed nude mice. Cancer Res. 1988;48(22):6510–6.PubMedGoogle Scholar
  115. 115.
    Znati CA, Rosenstein M, Boucher Y, et al. Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft. Cancer Res. 1996;56(5):964–8.PubMedGoogle Scholar
  116. 116.
    Znati CA, Rosenstein M, Mckee TD, et al. Irradiation reduces interstitial fluid transport and increases the collagen content in tumors. Clin Cancer Res. 2003;9(15):5508–13.PubMedGoogle Scholar
  117. 117.
    Zuang J, Zhang J, Willers H, et al. Chk2-mediated phosphorylation of BRCA1 regulates the fidelity of non-homologous end-joining. Cancer Res. 2006;66:1401–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Radiation OncologyMassachusetts General HospitalBostonUSA

Personalised recommendations