Skip to main content

Ceramide-1-Phosphate in Phagocytosis and Calcium Homeostasis

  • Chapter
Sphingolipids as Signaling and Regulatory Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 688))

Abstract

Sphingolipids are well established sources of important signaling molecules. For example, ceramide (Cer) has been described as a potent inhibitor of cell growth and inducer of apoptosis. In contrast, ceramide-1-phosphate (C1P) has been reported to have mitogenic properties and to inhibit apoptosis. Our understanding of the distinct biological roles of C1P in the regulation of DNA synthesis, inflammation, membrane fusion and intracellular Ca2+ increase has rapidly expanded. C1P is a bioactive sphingolipid formed by the phosphorylation of ceramide catalyzed by ceramide kinase (CERK). This chapter specifically focuses on the role of C1P in phagocytosis and Ca2+ homeostasis. Studies of the metabolism of C1P during phagocytosis, may lead to a better understanding of its role in signaling. Potentially, the inhibition of CERK and C1P formation may be a therapeutic target for inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones S, Lindberg FP, Brown EJ. Phagocytosis. In: Paul WE, ed. Fundamental Immunology. Philadelphia: Lippincott-Raven, 1999:997–1020.

    Google Scholar 

  2. Ravetch J, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001; 19:275–290.

    Article  CAS  PubMed  Google Scholar 

  3. Brown E. Complement receptors, adhesions and phagocytosis. Infect Agents Dis 1992; 1:63–70.

    CAS  PubMed  Google Scholar 

  4. Sanchez T, Hla T. Structural and functional characteristics of S1P receptors. J Cell Biochem 2004; 92:913.

    Google Scholar 

  5. Beron W, Alvarez-Dominquez C, Mayorga L et al. Memebrane traficing along the phagocytic pathway. Trends Cell Biol 1995; 5:100–104.

    Article  CAS  PubMed  Google Scholar 

  6. Burgoyne R, Geisow MJ. The annexin family of calcium-binding proteins. Cell Calcium 1989; 10:1–10.

    Article  CAS  PubMed  Google Scholar 

  7. Borregard N, Boxer LA. Williams Hematology, in Williams Hematology, 7th ed. In: Lichtman M, Beutler E, Kipps TJ, Seligsohn V, Kaushansky K, Prchal JT, ed. New York: McGraw-Hill Publishers, 2005;921–957.

    Google Scholar 

  8. Hannun Y, Bell RM. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 1989; 243:500–506.

    Article  CAS  PubMed  Google Scholar 

  9. Hinkovska-Galcheva V, Kjeldsen L, Mansfield J et al. Activation of a plasma membrane associated neutral sphingomyelinase and concomitant ceramide accumulation during IgG dependent phagocytosis in human polymorphonuclear leukocytes. Blood 1998; 91:4761–4769.

    CAS  PubMed  Google Scholar 

  10. Hinkovska-Galcheva V, Boxer L, Mansfield P et al. The formation of ceramide-1-phosphate during neutrophil phagocytosis and its role in liposome fusion. J Biol Chem 1998; 273:33203–33209.

    Article  CAS  PubMed  Google Scholar 

  11. Sugiura M, Kono K, Liu H et al. Ceramide Kinase, a novel lipid kinase. Molecular cloning and functional characterization. J Biol Chem 2002; 277:23294–23300.

    Article  CAS  PubMed  Google Scholar 

  12. Liang H, Yao N, Song JT et al. Ceramides modulate programed cell death in plants. Genes Dev 2003; 17:2636–2641.

    Article  CAS  PubMed  Google Scholar 

  13. Bajjalieh S, Martin T, Floor E. Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that copurifies with brain synaptic vesicles. J Biol Chem 1989; 264:14354–14360.

    CAS  PubMed  Google Scholar 

  14. Kolesnick R, Hemer M. Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J Biol Chem 1990; 265:18803–18808.

    CAS  PubMed  Google Scholar 

  15. Lemmon M, Ferguson KM, Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 1996; 85:621–624.

    Article  CAS  PubMed  Google Scholar 

  16. Harlan J, Hajduc PJ, Yoon HS et al. Pleckstrin homolog y domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 1994; 371:168–170.

    Article  CAS  PubMed  Google Scholar 

  17. Gibson T, Hyvonen M, Musacchio A et al. PH domain: the first anniversary. Trends Biochem Sci 1994; 19:349–353.

    Article  CAS  PubMed  Google Scholar 

  18. Kavanough W, Turck CW, Williams LT. PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 1995; 268:1177–1179.

    Article  Google Scholar 

  19. Rhoads A, Friedberg F. Sequence motifs for calmudolin recognition. FASEB J 1997; 11:331–340.

    CAS  PubMed  Google Scholar 

  20. Mitsutake S, Igarashi Y. Calmodulin is involved in the Ca2+—dependent activation of ceramide kinase as a calcium sensor. J Biol Chem 2005; 280:40436–44044.

    Article  CAS  PubMed  Google Scholar 

  21. Boath A, Gray C, Lidome E et al. Regulation and traffic of ceramide-1-phosphate produced by ceramide kinase, J Biol Chem 2008; 283:8517–8526.

    Article  CAS  PubMed  Google Scholar 

  22. Gomez-Munoz A, Frago LM, Alvarez L et al. Stimulation of DNA synthesis by natural ceramide 1-phosphate. Biochemical Journal 1997; 325:435–440.

    CAS  PubMed  Google Scholar 

  23. Pethus B, Bielawski A, Spiegel S et al. Ceramide kinase mediates cytokine-and calcium ionophoreinduced arachidonic and release. Biol Chem 2003; 278:38206–38213.

    Article  Google Scholar 

  24. Stahelin R, Subramanian P, Vora M et al. Ceramide-1-phosphate binds group IVA cytosolic phospholipase A2 via a Novel Site in the C2 Domain. J Biol Chem 2007;20467–20474.

    Google Scholar 

  25. Mitsutake S, Kim T-J, Inagaki Y et al. Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J Biol Chem 2004; 279:17570–17577.

    Article  CAS  PubMed  Google Scholar 

  26. Hinkovska-Galcheva V, Clark A, VanWay S et al. Ceramide kinase promotes Ca2+ signaling near IgG-opsonized targets and enhances phagolysosomal fusion in COS-1 cells. J Lipid Res 2008; 49:531–542.

    Article  CAS  PubMed  Google Scholar 

  27. Francis J, Smolen W, Balazovich KJ et al. Calcium-dependent fusion on the plasma membrane fraction from human neutrophils with liposomes. Biochim Biophys Acta 1990; 1025:1–9.

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura T, Abe A, Balazovich K et al. Ceramide regulates oxidant release in adherent human neutrophils. J Biol Chem 1994; 269:18384–18389.

    CAS  PubMed  Google Scholar 

  29. Blackwood R, Transue T, Harsh M et al. PLA2 promotes fusion between PMN-specific granules and complex liposomes. J Leuk Biol 1996; 59:663–667.

    CAS  Google Scholar 

  30. Kim J, Inagaki Y, Mitsutake S et al. Suppression of mast cell degranulation by a novel ceramide kinase inhibitor, the F-12509A olefin isomer K1. Biochim Biophys Acta 2005; 1738:82–90.

    CAS  PubMed  Google Scholar 

  31. Papahadjopoulos D, Vail W, Newton C et al. Studies on membrane fusion. III The role of calcium-induced phase changes. Biochim Biophys Acta 1977; 465:579–598.

    Article  CAS  PubMed  Google Scholar 

  32. Hinkovska-Galcheva V, Boxer L, Kindzelcki A et al. Ceramide-1-phosphate: A mediator of phagocytosis. J Biol Chem 2005; 280:26612–26621.

    Article  CAS  PubMed  Google Scholar 

  33. Dietrich C, Bagatolli L, Volovyk ZN et al. Lipid rafts reconstituted in model membranes. Biophys J 2001; 80:1417–1428.

    Article  CAS  PubMed  Google Scholar 

  34. Kindzelski A, Sitrin R, Petty H. Cutting edge:Optical microspectrophotometry supports the existence of gel phase lipid rafts at the lamellipodium of neutrophils: apparent role in calcium signalling. J Immunol 2004; 172:4681–4685.

    Google Scholar 

  35. Pollock J, McFarlane SM, Connell MC et al. TNF-a receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurons. Neuropharmacology 2002; 42:95–106.

    Article  Google Scholar 

  36. Lennartz M. Phospholipases and phagocytosis: the role of phospholipid-derived second messengers in phagocytosis. Int J Biochem 1999; 31:415–430.

    Article  CAS  Google Scholar 

  37. Tas P, Koschel K. Sphingosine-1-phosphate induces a Ca2+ signal in primary astrocytes and a Ca2+ signal and shape change in C6 rat glioma cells. J Neurosci Res 1998; 52:427–434.

    Article  CAS  PubMed  Google Scholar 

  38. Mandeville J, Ghosh R, Maxfield E. Intracellular calcium levels correlate with speed and persistent forward motion in migrating neutrophils. Biophys J 1995; 68:1207–1217.

    Article  CAS  PubMed  Google Scholar 

  39. Berridge M, Bootman MD, Roderick HL. Calcium signalling: Dynamics, homeostasis and remodeling. Nature Reviews/Molecular and Cellular Biology 2003; 4:517–529.

    Article  CAS  Google Scholar 

  40. Hofmann T, Obukhov G, Schaefer M et al. Direct activation of TRPC-6 and TRPC-3 chanels by diacylglycerol. Nature 1999; 397:259–263.

    Article  CAS  PubMed  Google Scholar 

  41. Mignen O, Shuttleworth T. IARC, a novel arachidonate-regulated, noncapacitative Ca2+ entry channel. J Biol Chem 2000; 275:9114–9119.

    Article  CAS  PubMed  Google Scholar 

  42. Clapham D, Runnels LW, Stubing C. The TRP ion channel family. Nat Rev Neurosci 2001; 2:387–396.

    Article  CAS  PubMed  Google Scholar 

  43. Hofmann T, Schaeffer M, Schultz G et al. Subunit composition of mammalian receptor potential channels in living cells. Proc Natl Acad Sci USA 2002; 99:7461–7466.

    Article  CAS  PubMed  Google Scholar 

  44. Turner H, Fleig A, Stokes A et al. Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release activity. Biochem J 2003; 371:341–350.

    Article  CAS  PubMed  Google Scholar 

  45. Okada T, Inoue R, Yamazaki K et al. Molecular and Functional Characterization of a Novel Mouse Transient Receptor Potential Protein Homologue TRP7. Ca2+—permeable cation channel that is constitutively activated and enhanced by stimulation of G-protein-coupled receptor. J Biol Chem 1999; 274:27359–27370.

    Article  CAS  PubMed  Google Scholar 

  46. Okamoto T, Schlegel A, Scherer P et al. Caveolins, a family of scaffolding proteins for organizing “Preassembled signaling complexes” at the plasma membrane. J Biol Chem 1998; 273:5419–5422.

    Article  CAS  PubMed  Google Scholar 

  47. Schaefer M, Plant TD, Obukhow AG et al. Receptor-mediated Regulation of the Nonselective Cation Channels TRPC4 and TRPC5. J Biol Chem 2000; 275:17517–17526.

    Article  CAS  PubMed  Google Scholar 

  48. Xu S-Z, Muraki K, Zeng F et al. A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility, Circulation Res 2006; 98:1381.

    Article  CAS  PubMed  Google Scholar 

  49. Spiegel S, Milstein S. Sphingosine-1-phosphate, a key signaling molecule. J Biol Chem 2002; 277:25851–25854.

    Article  CAS  PubMed  Google Scholar 

  50. Mayer zu Heringdort D, van Koppen CJ, Jacobs KH. Molecular diversity of sphingolipid signaling. FEBS Lett 1997; 410:34–38.

    Article  Google Scholar 

  51. Hinkovska-Galcheva V, VanWay SM, Shanley T et al. The role of sphingosine-1-phosphate and ceramide-1-phosphate in calcium homeostasis. Curent Opinion in Investigational Drugs 2008; 9:1192–1205.

    CAS  Google Scholar 

  52. Gomez-Munoz A. Ceramide-1phosphate: a novel regulator of cell activation, FEBS Letters 2004; 562:5–10.

    Article  CAS  PubMed  Google Scholar 

  53. Pettus B, Bielawska A, Subramanian P et al. Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 2004; 279:11320–11326.

    Article  CAS  PubMed  Google Scholar 

  54. Gomez-Munoz A, Duffy PA, Martin A et al. Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: antagonism by cellpermeable ceramides. Molecular Pharmacology 1995; 47:833–899.

    CAS  PubMed  Google Scholar 

  55. Rile G, Yatomi Y, Takafuta T et al. Ceramide 1-phosphate formation in neutrophils. Acta Haematologica 2003; 109:76–83.

    Article  CAS  PubMed  Google Scholar 

  56. Törnquist K, Ramström C, Rudnäs B et al. Ceramide 1-(2-cyanoethyl) phosphate enhances store-operated Ca2+ entry in thyroid FRTL-5 cells. Eur J Biochem 2002; 253:1–11.

    Google Scholar 

  57. Gijsbers S, Mannaerts GP, Himpens B et al. N-acetyl-sphingenine-1-phosphate is a potent calcium mobilizing agent. FEBS Letters 1999; 453:269–272.

    Article  CAS  PubMed  Google Scholar 

  58. Colina C, Flores A, Castillo C et al. Ceramide-1-phosphate induces Ca2+ mobiliztion in Jurkat T-cell by elevation of Ins (1,4,5) P3 and activation of a store-operated channel. Biochem Biophys Res Commun 2005; 336:54–60.

    Article  CAS  PubMed  Google Scholar 

  59. Hogback S, Leppimaki P, Rudnas B et al. Ceramide-1-phosphate increses intracellular free calcium in thyroid FRTL-5 cells: evidence for an effect mediated by inositol 1,4,5-trisphosphate and intracellular sphingosine-1-phosphate. Biochem J 2003; 370:111–119.

    Article  PubMed  Google Scholar 

  60. Itagaki K, Kannan KB, Livingston DH et al. Store-operated calcium entry in human neutrophils reflects multiple contributions from independently regulated pathways. J Immunol 2002; 168:4063–4069.

    CAS  PubMed  Google Scholar 

  61. Beech D. Ion channel switching and activation in smoot-muscle cells of occlusive vascular diseases. Biochemical Society Transactions 2007; 5:890–894.

    Google Scholar 

  62. Jain R. Molecular regulation of vessel maturation, Nat Med 2003; 9:685–693.

    Article  CAS  PubMed  Google Scholar 

  63. Siess W. Athero-and thrombogenic actions of lysophosphatidic acid and sphingosine-1-phosphate. Biochim Biophys Acta 2002; 1582:204–215.

    CAS  PubMed  Google Scholar 

  64. Carafoli E. Calcium Signaling: a tale for all seasons. Proc Natl Acad Sci USA 2002; 99:115–1122.

    Article  Google Scholar 

  65. Unser M, Albroubi A. A review of wavelets in biochemical applications. Proc IEEE 1996; 84:626–638.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vania Hinkovska-Galcheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hinkovska-Galcheva, V., Shayman, J.A. (2010). Ceramide-1-Phosphate in Phagocytosis and Calcium Homeostasis. In: Chalfant, C., Poeta, M.D. (eds) Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology, vol 688. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6741-1_9

Download citation

Publish with us

Policies and ethics