Skip to main content

Sphingolipid Transport

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 688))

Abstract

Sphingolipids are a family of ubiquitous membrane components that exhibit multiple functional properties fundamental to cell properties. Sphingolipid transport represents a crucial aspect in the metabolism, signaling and biological role of sphingolipids. Different mechanisms of sphingolipid movements contribute to their selective localization in different membranes but also in different portions and sides of the same membrane, thus ensuring and regulating their interaction with different enzymes and target molecules.

In this chapter we will describe the knowledge of the different mechanisms of sphingolipid movements within and between membranes, focusing on the recent advances in this field and considering the role played by selective sphingolipid molecules in the regulation of these mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hresko RC, Sugar P, Barenholz Y et al. The lateral distribution of pyrene-labeled sphingomyelin and glucosylceramide in phosphatidylcholine bilayers. Biophys J 1987; 51:725–33.

    CAS  PubMed  Google Scholar 

  2. Ollmann M, Schwarzmann G, Sandhoff K et al. Pyrene-labeled gangliosides: micelle formation in aqueous solution, lateral diffusion and thermotropic behavior in phosphatidylcholine bilayers. Biochemistry 1987; 26:5943–52.

    CAS  PubMed  Google Scholar 

  3. Galla HJ, Hartmann W. Excimer-forming lipids in membrane research. Chem Phys Lipids 1980; 27:199–219.

    CAS  PubMed  Google Scholar 

  4. Goins B, Masserini M, Barisas BG et al. Lateral diffusion of ganglioside GM1 in phospholipid bilayer membranes. Biophys J 1986; 49:849–56.

    CAS  PubMed  Google Scholar 

  5. Spiegel S, Schlessinger J, Fishman PH. Incorporation of fluorescent gangliosides into human fibroblasts: mobility, fate and interaction with fibronectin. J Cell Biol 1984; 99:699–704.

    CAS  PubMed  Google Scholar 

  6. van Meer G, Stelzer EH, Wijnaendts-van Resandt RW et al. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol 1987; 105:1623–35.

    PubMed  Google Scholar 

  7. Lisanti MP, Sargiacomo M, Graeve L et al. Polarized apical distribution of glycosyl-phosphatidylinositol anchored proteins in a renal epithelial cell line. Proc Natl Acad Sci USA 1988; 85:9557–61.

    CAS  PubMed  Google Scholar 

  8. Brown DA, Rose JK. Sorting of GPI anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68:533–44.

    CAS  PubMed  Google Scholar 

  9. Jacobson K, Dietrich C. Looking at lipid rafts? Trends Cell Biol 1999; 9:87–91.

    CAS  PubMed  Google Scholar 

  10. Herman B, Krishnan RV, Centonze VE. Microscopic analysis of fluorescence resonance energy transfer (FRET). Methods Mol Biol 2004; 261:351–70.

    CAS  PubMed  Google Scholar 

  11. Subczynski WK, Kusumi A. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim Biophys Acta 2003; 1610:231–43.

    CAS  PubMed  Google Scholar 

  12. Almeida PF, Pkorny A, Hinderliter A. Thermodynamics of membrane domains. Biochim Biophys Acta 2005; 1720:1–13.

    CAS  PubMed  Google Scholar 

  13. Brown DA, London E. Structure and origin or ordered lipid domains in biological membranes. J Membrane Biol 1998; 164:103–14.

    CAS  Google Scholar 

  14. Garcia-Sáez AJ, Chiantia S, Salgano J et al. Pore formation by a Bax-derived peptide: effect on the line tension of the membrane probed by AFM. Biophys J 2007; 93:103–12.

    PubMed  Google Scholar 

  15. Filippov A, Orrad G, Lindblom G. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys J 2003; 84:3079–86.

    CAS  PubMed  Google Scholar 

  16. Dietrich C, Bagatolli LA, Volovyk ZN et al. Lipid rafts reconstituted in model membranes. Biophys J 2001; 80:1417–28.

    CAS  PubMed  Google Scholar 

  17. Filippov A, Orrad G, Lindblom G. Lipid lateral diffusion in ordered and disordered phases in raft mixtures. Biophys J 2004; 86:891–96.

    CAS  PubMed  Google Scholar 

  18. Sheets ED, Lee GM, Simson R et al. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 1997; 36:12449–58.

    CAS  PubMed  Google Scholar 

  19. Pike LJ. The challenge of lipid rafts. J Lipid Res 2009; 50:S232–8.

    Google Scholar 

  20. Marks DL, Pagano RE. Endocytosis and sorting of glycosphingolipids in sphingolipid storge disease. Trends Cell Biol 2002; 12:605–13.

    CAS  PubMed  Google Scholar 

  21. Hanzal-Bayer MF, Hancock JF. Lipid rafts and membrane traffic. FEBS Lett 2007; 581:2098–104.

    CAS  PubMed  Google Scholar 

  22. Mishra S, Joshi PG. Lipid raft heterogeneity: an enigma. J Neurochem 2007; 103(Supp 1):135–42.

    CAS  PubMed  Google Scholar 

  23. Pike LJ. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J Lipid Res 2006; 47:1597–98.

    CAS  PubMed  Google Scholar 

  24. Kusumi A, Suzuki K. Towards understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 2005; 1746:234–51.

    CAS  PubMed  Google Scholar 

  25. Lingwood D, Ries J, Schwille P et al. Proc Natl Acad Sci USA 2008; 105:10005–10.

    CAS  PubMed  Google Scholar 

  26. Hofman EG, Ruonala MO, Bader AN et al. EGF Induces coalescence of different lipid rafts. J Cell Sci 2008; 121:2519–28.

    CAS  PubMed  Google Scholar 

  27. Wang TY, Silvius JR. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys J 2003; 84:367–78.

    CAS  PubMed  Google Scholar 

  28. Xu X, Bittman R, Duportail G et al. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal and disease-associated sterols and comparison of sphingomyelin, cerebrosides and ceramide. J Biol Chem 2001; 276:33540–6.

    CAS  PubMed  Google Scholar 

  29. Grassmé H, Cremesti A, Kolesnick R et al. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 2003; 22:5457–70.

    PubMed  Google Scholar 

  30. Staneva G, Chachaty C, Wolf C et al. The role of sphingomyelin in regulating phase coexistence in complex lipid model membranes: competition between ceramide and cholesterol. Biochim Biophys Acta 2008; 1778:2727–39.

    CAS  PubMed  Google Scholar 

  31. Goñi FM, Alonso A. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 2006; 1758:1902–21.

    PubMed  Google Scholar 

  32. Goñi FM, Alonso A. Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 2009; 1788:169–77.

    PubMed  Google Scholar 

  33. López-Montero I, Rodriguez N, Cribier S et al. Rapid transbilayer movement of ceramides in phospholipid vesicles and in human erythrocytes. J Biol Chem 2005; 280:25811–19.

    PubMed  Google Scholar 

  34. Trajkovic K, Hsu C, Chiantia S et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319:1244–7.

    CAS  PubMed  Google Scholar 

  35. Giussani P, Maceyka M, Le Stunff H et al. Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol Cell Biol 2006; 26:5055–69.

    CAS  PubMed  Google Scholar 

  36. Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 1971; 10:1111–20.

    CAS  PubMed  Google Scholar 

  37. Sharom FJ, Grant CW. A model for ganglioside behaviour in cell membranes. Biochim Biophys Acta 1978; 507:280–93.

    CAS  PubMed  Google Scholar 

  38. Buton X, Hervé P, Kubelt J et al. Transbilayer movement of monohexosylsphingolipids in endoplasmic reticulum and Golgi membranes. Biochemistry 2002; 41:13106–15.

    CAS  PubMed  Google Scholar 

  39. Rosenwald AG, Pagano RE. Intracellular transport of ceramide and its metabolites at the Golgi complex: insights from short-chain analogs. Adv Lipid Res 1993; 26:101–18.

    CAS  PubMed  Google Scholar 

  40. Bai J, Pagano RE. Measurements of spontaneous transfer and transbilayer movement of Bodipy-labeled lipids in lipid vesicles. Biochemistry 1997; 36:8840–48.

    CAS  PubMed  Google Scholar 

  41. van Meer G, Halter D, Sprong H et al. ABC lipid transporters: extruders, flippases, or flopless activators? FEBS Lett 2006; 580:1171–77.

    PubMed  Google Scholar 

  42. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71:537–92.

    CAS  PubMed  Google Scholar 

  43. Takahashi K, Kimura Y, Nagata K et al. ABC proteins: key molecules for lipid homeostasis. Med Mol Morphol 2005; 38:2–12.

    CAS  PubMed  Google Scholar 

  44. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 1993; 294:1–14.

    CAS  PubMed  Google Scholar 

  45. Bevers EM, Comfurius P, Dekkers DWC et al. Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta 1999; 1439:317–30.

    CAS  PubMed  Google Scholar 

  46. Lang F, Lang KS, Lang PA et al. Mechanisms and significance of eryptosis. Antioxidants and Redox Signaling 2006; 8:1183–92.

    CAS  PubMed  Google Scholar 

  47. Bratton DL, Fadok VA, Richter DA et al. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 1997; 272:26159–65.

    CAS  PubMed  Google Scholar 

  48. Daleke DL, Lyles JV. Identification and purification of aminophospholipid flippases. Biochim Biophys Acta 2000; 1486:108–27.

    CAS  PubMed  Google Scholar 

  49. Zwaal RF, Comfurius P, Bevers EM. Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 2005; 62:971–88.

    CAS  PubMed  Google Scholar 

  50. Zhou Q, Zhao J, Stout JG et al. Molecular cloning of human plasma membrane phospholipid scramblase: a protein mediating transbilayer movement of plasma membrane phospholipids. J Biol Chem 1997; 272:18240–44.

    CAS  PubMed  Google Scholar 

  51. Toti F, Satta N, Fressinaud E et al. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 1996; 87:1409–15.

    CAS  PubMed  Google Scholar 

  52. Williamson P, Christie A, Kohlin T et al. Phospholipid scramblase activation pathways in lymphocytes. Biochemistry 2001; 40:8065–72.

    CAS  PubMed  Google Scholar 

  53. Sahu SK, Gummadi SN, Manoj N et al. Phospholipid scramblases: An overview. Arch Biochem Biophys 2007; 462:103–14.

    CAS  PubMed  Google Scholar 

  54. López-Montero I, Vélez M, Devaux PF. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes. Biochim Biophys Acta 2007; 1768:553–61.

    PubMed  Google Scholar 

  55. Contreras FX, Villar AV, Alonso A et al. Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 2003; 278:37169–74.

    CAS  PubMed  Google Scholar 

  56. Frasch SC, Henson PM, Nagaosa K et al. Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) colocalize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils. J Biol Chem 2004; 279:17625–33.

    CAS  PubMed  Google Scholar 

  57. Nagao K, Takahashi K, Hanada K et al. Enhanced apoA-1-dependent cholesterol efflux by ABCA1 from sphingomyelin-deficient Chinese hamster ovary cells. J Biol Chem 2007; 282:14868–74.

    CAS  PubMed  Google Scholar 

  58. Kobayashi A, Takanezawa Y, Hirata T et al. Efflux of sphingomyelin, cholesterol and phosphatidylcholine by ABCG1. J Lipid Res 2006; 47:1791–802.

    CAS  PubMed  Google Scholar 

  59. Sano O, Kobayashi A, Nagao K et al. Sphingomyelin-dependend cholesterol efflux by ABCG1. J Lipid Res 2007; 48:2377–84.

    CAS  PubMed  Google Scholar 

  60. Sakai H, Tanaka Y, Tanaka M et al. ABCA2 deficiency results in abnormal sphingolipid metabolism in mouse brain. J Biol Chem 2007; 282:19692–99.

    CAS  PubMed  Google Scholar 

  61. Raggers RJ, van Helvoort A, Evers R et al. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci 1999; 112:415–22.

    CAS  PubMed  Google Scholar 

  62. Dekkers DW, Comfurius P, van Gool RG et al. Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes. Biochem J 2000; 350:531–35.

    CAS  PubMed  Google Scholar 

  63. Burger KNJ, van der Bijl P, van Meer G. Transbilayer movement of monohexosylsphingolipids in endoplasmic reticulum and Golgi membranes. J Cell Biol 1996; 133:15–28.

    CAS  PubMed  Google Scholar 

  64. Halter D, Neumann S, van Dijk SM et al. Pre-and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 2007; 179:101–15.

    CAS  PubMed  Google Scholar 

  65. Akiyama M, Sugiyama-Nakagiri Y, Sakai K et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 2005; 115:1777–84.

    CAS  PubMed  Google Scholar 

  66. Zuo Y, Zhuang DZ, Han R et al. ABCA12 maintains the epidermal lipid permeability barrier by facilitating formation of ceramide linoleic esters. J Biol Chem 2008; 283:36624–35.

    CAS  PubMed  Google Scholar 

  67. Elias PM, Williams ML, Holleran WM et al. Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism. J Lipid Res 2008; 49:697–714.

    CAS  PubMed  Google Scholar 

  68. Contreras FX, Basañez G, Alonso A et al. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 2005; 88:348–59.

    CAS  PubMed  Google Scholar 

  69. Tepper AD, Ruurs P, Wiedmer T et al. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J Cell Biol 2000; 150:155–64.

    CAS  PubMed  Google Scholar 

  70. Goñi FM, Contreras FX, Montes LR et al. Biophysics (and sociology) of ceramides. Biochem Soc Symp 2005; 72:177–88.

    PubMed  Google Scholar 

  71. Kielar D, Kaminski WE, Liebisch G et al. Adenosine triphosphate binding cassette (ABC) transporters are expressed and regulated during terminal keratinocyte differentiation: a potential role for ABCA7 in epidermal lipid reorganization. J Invest Dermatol 2003; 121:465–474.

    CAS  PubMed  Google Scholar 

  72. Evseenko DA, Murthi P, Paxton JW et al. The ABC transporter BCRP/ABCG2 is a placental survival factor and its expression is reduced in idiopathic human fetal growth restriction. FASEB J 2007; 21:3592–605.

    CAS  PubMed  Google Scholar 

  73. Kihara A, Igarashi Y. Identification and characterization of a Saccharomyces cerevisiae gene, RSB1, involved in sphingoid long-chain base release. J Biol Chem 2002; 277:30048–54.

    CAS  PubMed  Google Scholar 

  74. Kihara A, Igarashi Y. Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol Biol Cell 2004; 15:4949–59.

    CAS  PubMed  Google Scholar 

  75. Panwar SL, Moye-Rowley WS. Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. J Biol Chem 2006; 281:6376–84.

    CAS  PubMed  Google Scholar 

  76. Yatomi Y. Plasma sphingosine 1-phosphate metabolism and analysis. Biochim Biophys Acta 2008; 1780:606–11.

    CAS  PubMed  Google Scholar 

  77. Maceyka MW, Milstien S, Spiegel S. Sphingosine-1-phosphate: the Swiss army knife of sphingolipid signaling. J Lipid Res 2009; 50:S272–6.

    Google Scholar 

  78. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9:139–50.

    CAS  PubMed  Google Scholar 

  79. Mitra P, Oskeritzian CA, Payne SG et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 2006; 103:16394–99.

    CAS  PubMed  Google Scholar 

  80. Sato K, Malchinkhuu E, Horiuchi Y et al. Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J Neurochem 2007; 103:2610–19.

    CAS  Google Scholar 

  81. Lee Y-M, Venkataraman K, Hwang S-I et al. A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins Other Lipid Mediat 2007; 84:154–62.

    CAS  PubMed  Google Scholar 

  82. Boujaoude LC, Bradshaw-Wilder C, Mao C et al. Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. J Biol Chem 2001; 276:35258–64.

    CAS  PubMed  Google Scholar 

  83. Peter BF, Lidington D, Harada A et al. Role of sphingosine-1-phosphate phosphohydrolase 1 in the regulation of resistance artery tone. Circ Res 2008; 103:315–24.

    CAS  PubMed  Google Scholar 

  84. van Meer G, Holthuis JC. Sphingolipid transport in eukaryotic cells. Biochim Biophys Acta 2000; 1486:145–70.

    PubMed  Google Scholar 

  85. Hanada K, Kumagai K, Yasuda S et al. Molecular machinery for nonvesicular trafficking of ceramide. Nature 2003; 426:803–9.

    CAS  PubMed  Google Scholar 

  86. Hanada K, Hara T, Fukasawa M et al. Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem 1998; 273:33787–94.

    CAS  PubMed  Google Scholar 

  87. Fukasawa M, Nishijima M, Hanada K. Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J Cell Biol 1999; 144:637–85.

    Google Scholar 

  88. Giussani P, Colleoni T, Brioschi L et al. Ceramide traffic in C6 glioma cells: evidence for CERT-dependent and independent transport from ER to the Golgi apparatus. Biochim Biophys Acta 2008; 1781:40–51.

    CAS  PubMed  Google Scholar 

  89. Toth B, Balla A, Ma H et al. Phosphatidylinositol 4-kinase IIIb regulates the transport of ceramide between the endoplasmic reticulum and Golgi. J Biol Chem 2006; 281:36369–77.

    CAS  PubMed  Google Scholar 

  90. D’Angelo G, Polishchuk E, Di Tullio G et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 2007; 449:62–7.

    PubMed  Google Scholar 

  91. Lamour NF, Stahelin RV, Wijesinghe DS et al. Ceramide kinase uses ceramide provided by ceramide transport protein: localization to organelles of eicosanoid synthesis. J Lipid Res 2007; 48:1293–304.

    CAS  PubMed  Google Scholar 

  92. Boath A, Graf C, Lidome E et al. Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase comparative analysis to glucosylceramide and sphingomyelin. J Biol Chem 2008; 283:8517–26.

    CAS  PubMed  Google Scholar 

  93. Raya A, Revert F, Navarro S et al. Characterization of a novel type of serine/threonine kinase that specifically phosphorylates the human goodpasture antigen. J Biol Chem 1999; 274:12642–9.

    CAS  PubMed  Google Scholar 

  94. Hanada K, Kumagai K, Tomishige N et al. CERT and intracellular trafficking of ceramide. Biochim Biophys Acta 2007; 1771:644–53.

    CAS  PubMed  Google Scholar 

  95. Raya A, Revert-Ros F, Martínez-Martínez P et al. Goodpasture antigen-binding protein the kinase that phosphorylates the Goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis. J Biol Chem 2000; 276:40392–9.

    Google Scholar 

  96. Granero-Moltó F, Sarmah S, O’Rear L et al. Goodpasture antigen-binding protein and its spliced variant, ceramide transfer protein, have different functions in the modulation of apoptosis during zebrafish development. J Biol Chem 2008; 283:20495–504.

    PubMed  Google Scholar 

  97. Revert-Ros F, Ventura I, Martínez-Martínez P et al. Goodpasture antigen-binding protein is a soluble exportable protein which interacts with type IV collagen: identification of novel membrane-bound isoforms. J Biol Chem 2008; 283:30246–55.

    PubMed  Google Scholar 

  98. Yamaji T, Kumagai K, Tomishige N et al. Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 2008; 60:511–8.

    CAS  PubMed  Google Scholar 

  99. Kudo N, Kumagai K, Tomishige N et al. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci USA 2008; 105:488–93.

    CAS  PubMed  Google Scholar 

  100. Kumagai K, Yasuda S, Okemoto K et al. CERT mediates intermembrane transfer of various molecular species of ceramides. J Biol Chem 2005; 280:64488–95.

    Google Scholar 

  101. Futerman AH. Intracellular trafficking of sphingolipids; relationship to biosynthesis. Biochim Biophys Acta 2006; 1758:18885–92.

    Google Scholar 

  102. Kawano M, Kumagai K, Nishijima M et al. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 2006; 281:30279–88.

    CAS  PubMed  Google Scholar 

  103. Ladinsky MS, Mastronarde DN, McIntosh JR et al. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 1999; 144:1135–1149.

    CAS  PubMed  Google Scholar 

  104. Kumagai K, Kawano M, Shinkai-Ouchi F et al. Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START domains of CERT. J Biol Chem 2007; 282:14868–74.

    Google Scholar 

  105. Tomishige N, Kumagai K, Kusuda J et al. Casein kinase Ig2 down-regulates trafficking of ceramide in the synthesis of sphingomyelin. Mol Biol Cell 2009; 20:348–57.

    CAS  PubMed  Google Scholar 

  106. Fugmann T, Hausser A, Schöffler et al. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J Cell Biol 2007; 178:15–22.

    CAS  PubMed  Google Scholar 

  107. Saito S, Matsui H, Kawano M et al. Protein phosphatase 2Ce is an endoplasmic reticulum integral membrane protein that dephosphorylates the ceramide transport protein CERT to enhance its association with organelle membranes. J Biol Chem 2008; 283:6584–93.

    CAS  PubMed  Google Scholar 

  108. Perry RJ, Ridgway ND. Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol Biol Cell 2006; 17:2604–16.

    CAS  PubMed  Google Scholar 

  109. Rao RP, Yuan C, Allegood JC et al. Ceramide transfer protein function is essential for normal oxidative stress response and lifespan. Proc Natl Acad Sci USA 2007; 104:1364–9.

    Google Scholar 

  110. Wang X, Rao RP, Kasakowska-Cholody T et al. Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. J Cell Biol 2009; 184:143–58.

    CAS  PubMed  Google Scholar 

  111. Swanton C, Marani M, Pardo O et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 2007; 11:498–512.

    CAS  PubMed  Google Scholar 

  112. Brown RE, Mattjus P. Glycolipid transfer proteins. Biochim Biophys Acta 2007; 1771:746–60.

    CAS  PubMed  Google Scholar 

  113. Yamada K, Abe A, Sasaki T. Specificity of the glycolipid transfer protein from pig brain. J Biol Chem 1985; 260:4615–21.

    CAS  PubMed  Google Scholar 

  114. Yamada K, Abe A, Sasaki T. Glycolipid transfer protein from pig brain transfers glycolipids with beta-linked sugars but not with alpha-linked sugars at the sugar-lipid linkage. Biochim Biophys Acta 1986; 879:345–349.

    CAS  PubMed  Google Scholar 

  115. Mattjus P. Glycolipid transfer proteins and membrane interaction. Biochim Biophys Acta 2009; 1788:267–72.

    CAS  PubMed  Google Scholar 

  116. Siskind LJ. Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembranes 2005; 37:143–53.

    CAS  Google Scholar 

  117. Gissen P, Maher ER. Cargos and genes: insights into vesicular transport from inherited human disease. J Med Genet 2007; 44:545–55.

    CAS  PubMed  Google Scholar 

  118. Perry RJ, Ridgway ND. Molecular mechanisms and regulation of ceramide transport. Biochim Biophys Acta 2005; 1734:220–34.

    CAS  PubMed  Google Scholar 

  119. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9:112–24.

    PubMed  Google Scholar 

  120. Viani P, Giussani P, Brioschi L et al. Ceramide in nitric oxide inhibition of glioma cell growth. Evidence for the involvement of ceramide traffic. J Biol Chem 2003; 278:9592–601.

    CAS  PubMed  Google Scholar 

  121. Funato K, Riezman H. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J Cell Biol 2001; 55:949–59.

    Google Scholar 

  122. Horvath A, Sutterlin C, Manning-Krieg U et al. Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J 1994; 13:3687–95.

    CAS  PubMed  Google Scholar 

  123. Kajiwara K, Watanabe R, Pichler H. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Mol Biol Cell 2008; 19:2069–82.

    CAS  PubMed  Google Scholar 

  124. Giussani P, Brioschi L, Bassi R et al. Phosphatidylinositol 3-kinase/Akt pathway regulates the endoplasmic reticulum to Golgi traffic of ceramide in glioma cells: a link between lipid signaling pathways involved in the control of cell survival. J Biol Chem 2009; 284:5088–96.

    CAS  PubMed  Google Scholar 

  125. Holthuis JCM, Levine TP. Lipid traffic: floppy drives and a superhighway. Nature 2005; 6:209–20.

    CAS  Google Scholar 

  126. Brügger B, Sandhoff R, Wegehingel S et al. Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J Cell Biol 2000; 151:507–17.

    PubMed  Google Scholar 

  127. Folsch H, Ohno H, Bonifacino J S et al. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 1999; 99:189–98.

    CAS  PubMed  Google Scholar 

  128. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387:569–72.

    CAS  PubMed  Google Scholar 

  129. Zegers MM, Hoekstra D. Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells. Biochem J 1998; 336:257–69.

    CAS  PubMed  Google Scholar 

  130. Wojtal KA, de Vries E, Hoekstra D et al. Efficient trafficking of MDR1/P-Glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIa anchoring and glucosylceramide. Mol Biol Cell 2006; 17:3638–50.

    CAS  PubMed  Google Scholar 

  131. Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007; 8:603–12.

    CAS  PubMed  Google Scholar 

  132. Falguières T, Luyet P-P, Gruenberg J. Molecular assemblies and membrane domains in multivesicular endosome dynamics. Exp Cell Res 2009; 15:315:1567–73.

    Google Scholar 

  133. Sharma DK, Brown JC, Choudhury A et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 2004; 15:3114–22.

    CAS  PubMed  Google Scholar 

  134. Cheng ZJ, Singh RD, Sharma DK et al. Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol Biol Cell 2006; 17:3197–210.

    CAS  PubMed  Google Scholar 

  135. Galvan C, Camoletto PG, Cristofani F. Anomalous surface distribution of glycosyl phosphatidyl inositol—anchored proteins in neurons lacking acid sphingomyelinase. Mol Biol Cell 2008; 19:509–22.

    CAS  PubMed  Google Scholar 

  136. Kolter T, Sandhoff K. Principles of lysosomal membrane digestion-stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 2005; 21:81–103.

    CAS  PubMed  Google Scholar 

  137. Schulze H, Kolter T, Sandhoff K. Principles of lysosomal membrane degradation. Cellular topology and biochemistry of lysosomal lipid degradation. Biochim Biophys Acta 2009; 1793:674–83.

    CAS  PubMed  Google Scholar 

  138. Chevallier J, Chamoun Z, Jiang G et al. Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem 2008; 283:27871–80.

    CAS  PubMed  Google Scholar 

  139. London ME. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 2004; 279:9997–10004.

    CAS  PubMed  Google Scholar 

  140. Tettamanti G, Bassi R, Viani P et al. Salvage pathways in glycosphingolipid metabolism. Biochimie 2003; 85:423–37.

    CAS  PubMed  Google Scholar 

  141. Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5:121–32.

    CAS  PubMed  Google Scholar 

  142. Koivusalo M, Jansen M, Somerharju P et al. Endocytic trafficking of sphingomyelin depends on its acyl chain length. Mol Biol Cell 2007; 18:5113–23.

    CAS  PubMed  Google Scholar 

  143. Stoorvogel W, Kleijmeer MJ, Geuze HJ et al. The biogenesis and functions of exosomes. Traffic 2002; 3:321–30.

    CAS  PubMed  Google Scholar 

  144. van Niel G, Porto-Carreiro I, Simoes S et al. Exosomes: a common pathway for a specialized function. J Biochem 2006; 140:13–21.

    PubMed  Google Scholar 

  145. Polishchuk R, Di Pentima A, Lippincott-Schwartz J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat Cell Biol 2004; 6:297–307.

    CAS  PubMed  Google Scholar 

  146. van IJzendoorn SCD, Van Der Wouden JM, Liebisch G et al. Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover. Mol Biol Cell 2004; 15:4115–24.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Riboni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Riboni, L., Giussani, P., Viani, P. (2010). Sphingolipid Transport. In: Chalfant, C., Poeta, M.D. (eds) Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology, vol 688. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6741-1_2

Download citation

Publish with us

Policies and ethics