Sphingolipids in Parasitic Protozoa

  • Kai Zhang
  • James D. Bangs
  • Stephen M. Beverley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 688)


The surface of most protozoan parasites relies heavily upon lipid-anchored molecules, to form protective barriers and play critical functions required for infectivity. Sphingolipids (SLs) play important roles through their abundance and involvement in membrane microdomain formation, as well as serving as the lipid anchor for many of these molecules and in some but possibly not all species, as important signaling molecules. Interactions of parasite sphingolipid metabolism with that of the host may potentially contribute to parasite survival and/or host defense. In this chapter we summarize current knowledge of SL structure, synthesis and function in several of the major parasitic protozoan groups.


Trypanosoma Cruzi Lignoceric Acid Ulatory Molecule Trypanosomatid Protozoan Ectocervical Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schofield CJ, Jannin J, Salvatella R. The future of Chagas disease control. Trends Parasitol 2006; 22:583–588.CrossRefPubMedGoogle Scholar
  2. 2.
    Simarro PP, Jannin J, Cattand P. Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med 2008; 5:e55.CrossRefPubMedGoogle Scholar
  3. 3.
    Cunningham AC. Parasitic adaptive mechanisms in infection by Leishmania. Exp Mol Pathol 2002; 72:132–141.CrossRefPubMedGoogle Scholar
  4. 4.
    Croft SL, Coombs GH. Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 2003; 19:502–508.CrossRefPubMedGoogle Scholar
  5. 5.
    Sonda S, Sala G, Ghidoni R et al. Inhibitory effect of aureobasidin A on Toxoplasma gondii. Antimicrob Agents Chemother 2005; 49:1794–1801.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang K, Showalter M, Revollo J et al. Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO J 2003; 22:6016–6026.CrossRefPubMedGoogle Scholar
  7. 7.
    Hsu FF, Turk J, Zhang K et al. Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 2007; 18:1591–1604.CrossRefPubMedGoogle Scholar
  8. 8.
    Guther ML, Lee S, Tetley L et al. GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly and are not the only components of the surface coat. Mol Biol Cell 2006; 17:5265–5274.CrossRefPubMedGoogle Scholar
  9. 9.
    Fridberg A, Olson CL, Nakayasu ES et al. Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in Trypanosoma brucei. J Cell Sci 2008; 121:522–535.CrossRefPubMedGoogle Scholar
  10. 10.
    Sutterwala SS, Hsu FF, Sevova ES et al. Developmentally regulated sphingolipid synthesis in African trypanosomes. Mol Microbiol 2008; 70:281–296.CrossRefPubMedGoogle Scholar
  11. 11.
    Patnaik PK, Field MC, Menon AK et al. Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Mol Biochem Parasitol 1993; 58:97–105.CrossRefPubMedGoogle Scholar
  12. 12.
    Uemura A, Watarai S, Kushi Y et al. Analysis of neutral glycosphingolipids from Trypanosoma brucei. Vet Parasitol 2006; 140:264–272.CrossRefPubMedGoogle Scholar
  13. 13.
    Bertello LE, Goncalvez MF, Colli W et al. Structural analysis of inositol phospholipids from Trypanosoma cruzi epimastigote forms. Biochem J 1995; 310(Pt 1):255–261.PubMedGoogle Scholar
  14. 14.
    Uhrig ML, Couto AS, Colli W et al. Characterization of inositolphospholipids in Trypanosoma cruzi trypomastigote forms. Biochim Biophys Acta 1996; 1300:233–239.PubMedGoogle Scholar
  15. 15.
    Quinones W, Urbina JA, Dubourdieu M et al. The glycosome membrane of Trypanosoma cruzi epimastigotes: protein and lipid composition. Exp Parasitol 2004; 106:135–149.CrossRefPubMedGoogle Scholar
  16. 16.
    Gerold P, Schwarz RT. Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2001; 112:29–37.CrossRefPubMedGoogle Scholar
  17. 17.
    Landoni M, Duschak VG, Peres VJ et al. Plasmodium falciparum biosynthesizes sulfoglycosphingolipids. Mol Biochem Parasitol 2007; 154:22–29.CrossRefPubMedGoogle Scholar
  18. 18.
    Azzouz N, Rauscher B, Gerold P et al. Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii. Int J Parasitol 2002; 32:677–684.CrossRefPubMedGoogle Scholar
  19. 19.
    Costello CE, Glushka J, van Halbeek H et al. Structural characterization of novel inositol phosphosphingolipids of Tritrichomonas foetus and Trichomonas vaginalis. Glycobiology 1993; 3:261–269.CrossRefPubMedGoogle Scholar
  20. 20.
    Singh BN, Costello CE, Beach DH. Structures of glycophosphosphingolipids of Tritrichomonas foetus: a novel glycophosphosphingolipid. Arch Biochem Biophys 1991; 286:409–418.CrossRefPubMedGoogle Scholar
  21. 21.
    Beach DH, Holz GG Jr, Singh BN et al. Phospholipid metabolism of cultured Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol 1991; 44:97–108.CrossRefPubMedGoogle Scholar
  22. 22.
    Kaneda Y, Goutsu T. Lipid analysis of Giardia lamblia and its culture medium. Ann Trop Med Parasitol 1988; 82:83–90.PubMedGoogle Scholar
  23. 23.
    Hernandez Y, Shpak M, Duarte TT et al. Novel role of sphingolipid synthesis genes in regulating giardial encystation. Infect Immun 2008; 76:2939–2949.CrossRefPubMedGoogle Scholar
  24. 24.
    Fernandes AP, Nelson K, Beverley SM. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci USA 1993; 90:11608–11612.CrossRefPubMedGoogle Scholar
  25. 25.
    Wassef MK, Fioretti TB, Dwyer DM. Lipid analyses of isolated surface membranes of Leishmania donovani promastigotes. Lipids 1985; 20:108–115.CrossRefPubMedGoogle Scholar
  26. 26.
    Kaneshiro ES, Jayasimhulu K, Lester RL. Characterization of inositol lipids from Leishmania donovani promastigotes: identification of an inositol sphingophospholipid. J Lipid Res 1986; 27:1294–1303.PubMedGoogle Scholar
  27. 27.
    Denny PW, Goulding D, Ferguson MA et al. Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Mol Microbiol 2004; 52:313–327.CrossRefPubMedGoogle Scholar
  28. 28.
    McConville MJ, Blackwell JM. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem 1991; 266:15170–15179.PubMedGoogle Scholar
  29. 29.
    Winter G, Fuchs M, McConville MJ et al. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J Cell Sci 1994; 107 (Pt 9):2471–2482.PubMedGoogle Scholar
  30. 30.
    Schneider P, Rosat JP, Ransijn A et al. Characterization of glycoinositol phospholipids in the amastigote stage of the protozoan parasite Leishmania major. Biochem J 1993; 295:555–564.PubMedGoogle Scholar
  31. 31.
    Ivens AC, Peacock CS, Worthey EA et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309:436–442.CrossRefPubMedGoogle Scholar
  32. 32.
    Denny PW, Shams-Eldin H, Price HP et al. The protozoan inositol phosphorylceramide synthase: a novel drug target that defines a new class of sphingolipid synthase. J Biol Chem 2006; 281:28200–28209.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang K, Pompey JM, Hsu FF et al. Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO J 2007; 26:1094–1104.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang K, Hsu FF, Scott DA et al. Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 2005; 55:1566–1578.CrossRefPubMedGoogle Scholar
  35. 35.
    Ghosh S, Bhattacharyya S, Das S et al. Generation of ceramide in murine macrophages infected with Leishmania donovani alters macrophage signaling events and aids intracellular parasitic survival. Mol Cell Biochem 2001; 223:47–60.CrossRefPubMedGoogle Scholar
  36. 36.
    Ghosh S, Bhattacharyya S, Sirkar M et al. Leishmania donovani suppresses activated protein 1 and NF-kappaB activation in host macrophages via ceramide generation: involvement of extracellular signal-regulated kinase. Infect Immun 2002; 70:6828–6838.CrossRefPubMedGoogle Scholar
  37. 37.
    Spath GF, Lye LF, Segawa H et al. Persistence without pathology in phosphoglycan-deficient Leishmania major. Science 2003; 301:1241–1243.CrossRefPubMedGoogle Scholar
  38. 38.
    Ilg T, Demar M, Harbecke D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J Biol Chem 2001; 276:4988–4997.CrossRefPubMedGoogle Scholar
  39. 39.
    Nagiec MM, Nagiec EE, Baltisberger JA et al. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 1997; 272:9809–9817.CrossRefPubMedGoogle Scholar
  40. 40.
    Takesako K, Ikai K, Haruna F et al. Aureobasidins, new antifungal antibiotics: taxonomy, fermentation, isolation and properties. J Antibiot 1991; 44:919–924.PubMedGoogle Scholar
  41. 41.
    Tanaka AK, Valero VB, Takahashi HK et al. Inhibition of Leishmania (Leishmania) amazonensis growth and infectivity by aureobasidin A. J Antimicrob Chemother 2007; 59:487–492.CrossRefPubMedGoogle Scholar
  42. 42.
    Godfrey DG. Phospholipids of Trypanosoma lewisi, T. vivax, T. congolense and T. brucei. Exp Parasitol 1967; 20:106–118.CrossRefPubMedGoogle Scholar
  43. 43.
    Fridberg A, Olsen CL, Nakayasu ES et al. Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in Trypanosoma brucei. J Cell Sci 2008; 121:522–535.CrossRefPubMedGoogle Scholar
  44. 44.
    Sutterwala SS, Creswell CH, Sanyal S et al. De novo sphingolipid synthesis is essential for viability, but not transport of glycosylphosphatidylinositol-anchored proteins in African trypanosomes. Eukaryotic Cell 2007; 6:454–464.CrossRefPubMedGoogle Scholar
  45. 45.
    Da Silveira JF, Colli W. Chemical composition of the plasma membrane from epimastigote forms of Trypanosoma cruzi. Biochimica et Biophysica Acta 1981; 644:341–350.CrossRefGoogle Scholar
  46. 46.
    Oliveira MM, Timm SL, Costa SCG. Lipid composition of Trypanosoma cruzi. Comp Biochem Physiol 1977; 58B:195–199.Google Scholar
  47. 47.
    Quiñones W, Urbina JA, Dubourdieu M et al. The glycosome membrane of Trypansoma cruzi epimastigotes: protein and lipid composition. Exp Parasitol 2004; 106:135–149.CrossRefPubMedGoogle Scholar
  48. 48.
    Bertello L, Goncalvez MF, Colli W et al. Structural analysis of inositol phospholipids from Trypanosoma cruzi epimastigote forms. Biochem J 1995; 310:255–261.PubMedGoogle Scholar
  49. 49.
    Bertello LE, Andrews NW, Lederkremer RM. Developmentally regulated expression of ceramide in Trypanosoma cruzi. Mol Biochem Parasitol 1996:143–151.Google Scholar
  50. 50.
    Salto ML, Bertello LE, Vieira M et al. Formation and remodeling of inositolphosphoceramide during differentiation of Trypanosoma cruzi from trypomastigote to amastigote. Eukaryot Cell 2003; 2:756–768.CrossRefPubMedGoogle Scholar
  51. 51.
    Barreto-Bergter E, Vermelho AB, Hartmann R et al. Structural characterization of neutral glycosphingolipids from Trypanosoma cruzi. Mol Biochem Parasitol 1992; 51:263–270.CrossRefPubMedGoogle Scholar
  52. 52.
    Vermelho AB, Meirelles MNL, Pereira MC et al. Heart muscle cells share common neutral glycosphingolipids with Trypanosoma cruzi. Acta Tropica 1997; 64:131–143.CrossRefPubMedGoogle Scholar
  53. 53.
    Figueiredo JM, Dias WB, Mendonca-Previato L et al. Characterization of the inositol phosphorylceramide synthase activity from Trypanosoma cruzi. Biochem J 2005; 387:519–529.CrossRefPubMedGoogle Scholar
  54. 54.
    Lederkremer RM, Casal OL, Tanaka CT et al. Ceramide and inositol content of the lipopeptidophosphoglycan from Trypanosoma cruzi. Biochem Biophys Res Commun 1978; 85:1268–1274.CrossRefPubMedGoogle Scholar
  55. 55.
    Lederkremer RM, Lima C, Ramirez MI et al. Structural features of the lipopeptidophosphoglycan from Trypanosoma cruzi common with the glycophosphatidylinositol anchors. Eur J Biochem 1990; 192:337–345.CrossRefPubMedGoogle Scholar
  56. 56.
    Lederkremer RM, Lima C, Ramirez MI et al. Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi epimastigotes. J Biol Chem 1991; 266:23670–23675.PubMedGoogle Scholar
  57. 57.
    Previato JO, Gorin PAJ, Mazurek M et al. Primary structure of the oligosaccharide chain of lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. J Biol Chem 1990; 265:2518–2526.PubMedGoogle Scholar
  58. 58.
    Acosta-Serrano A, Schenkman SNY, Mehlert A et al. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem 1995; 270:27244–27253.CrossRefGoogle Scholar
  59. 59.
    Lederkremer RM, Lima CE, Ramirez MI et al. Hexadecylpalmitoylglycerol or ceramide is linked to similar glycophosphoinositol anchor-like structures in Trypanosoma cruzi. Eur J Biochem 1993; 218:929–936.CrossRefPubMedGoogle Scholar
  60. 60.
    Previato JO, Jones C, Xavier MT et al. Structural characterization of the major glycosylphosphatidylinositol membrane-anchored glycoprotein form epimastigote forms of Trypanosoma cruzi Y-strain. J Biol Chem 1995; 270:7241–7250.CrossRefPubMedGoogle Scholar
  61. 61.
    Heise N, Cardoso de Almeida ML, Ferguson MAJ. Characterization of the lipid moiety of the glycosylphosphatidyl inositol anchor of Trypanosoma cruzi 1G7-antigen. Mol Biochem Parasitol 1995; 70:71–84.CrossRefPubMedGoogle Scholar
  62. 62.
    Pittet M, Conzelman A. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta 2007; 1771:405–420.Google Scholar
  63. 63.
    Bertello LE, Alves MJ, Colli W et al. Inositolphosphoceramide is not a substrate for the first steps in the biosynthesis of glycoinositolphospholipids in Trypanosoma cruzi. Mol Biochem Parasitol 2004; 133:71–80.CrossRefPubMedGoogle Scholar
  64. 64.
    Tafesse FG, Ternes P, Holthuis JC. The multigenic sphingomyelin synthase family. J Biol Chem 2006; 281:29421–29425.CrossRefPubMedGoogle Scholar
  65. 65.
    Huitema K, van den Dikkenberg J, Brouwers JF et al. Identification of a family of animal sphingomyelin synthases. Eur Mol Biol Organ J 2004; 23:33–44.Google Scholar
  66. 66.
    Haldar K, Uyetake L, Ghori N et al. The accumulation and metabolism of a fluorescent ceramide derivative in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 1991; 49:143–156.CrossRefPubMedGoogle Scholar
  67. 67.
    Couto AS, Caffaro C, Uhrig ML et al. Glycosphingolipids in Plasmodium falciparum. Presence of an active glucosylceramide synthase. Eur J Biochem 2004; 271:2204–2214.CrossRefPubMedGoogle Scholar
  68. 68.
    Lauer SA, Ghori N, Haldar K. Sphingolipid synthesis as a target for chemotherapy against malaria parasites. Proc Natl Acad Sci USA 1995; 92:9181–9185.CrossRefPubMedGoogle Scholar
  69. 69.
    Lauer SA, Rathod PK, Ghori N et al. A membrane network for nutrient import in red cells infected with the malaria parasite. Science 1997; 276:1122–1125.CrossRefPubMedGoogle Scholar
  70. 70.
    Lauer S, VanWye J, Harrison T et al. Vacuolar uptake of host components and a role for cholesterol and sphingomyelin in malarial infection. EMBO J 2000; 19:3556–3564.CrossRefPubMedGoogle Scholar
  71. 71.
    Hanada K, Palacpac NM, Magistrado PA et al. Plasmodium falciparum phospholipase C hydrolyzing sphingomyelin and lysocholinephospholipids is a possible target for malaria chemotherapy. J Exp Med 2002; 195:23–34.CrossRefPubMedGoogle Scholar
  72. 72.
    Pankova-Kholmyansky I, Flescher E. Potential new antimalarial chemotherapeutics based on sphingolipid metabolism. Chemotherapy 2006; 52:205–209.CrossRefPubMedGoogle Scholar
  73. 73.
    Labaied M, Dagan A, Dellinger M et al. Anti-Plasmodium activity of ceramide analogs. Malar J 2004; 3:49.CrossRefPubMedGoogle Scholar
  74. 74.
    Singh BN, Beach DH, Lindmark DG et al. Identification of the lipid moiety and further characterization of the novel lipophosphoglycan-like glycoconjugates of Trichomonas vaginalis and Trichomonas foetus. Arch Biochem Biophys 1994; 309:273–280.CrossRefPubMedGoogle Scholar
  75. 75.
    Bastida-Corcuera FD, Okumura CY, Colocoussi A et al. Trichomonas vaginalis lipophosphoglycan mutants have reduced adherence and cytotoxicity to human ectocervical cells. Eukaryot Cell 2005; 4:1951–1958.CrossRefPubMedGoogle Scholar
  76. 76.
    Fichorova RN, Trifonova RT, Gilbert RO et al. Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun 2006; 74:5773–5779.CrossRefPubMedGoogle Scholar
  77. 77.
    Gibson GR, Ramirez D, Maier J et al. Giardia lamblia: incorporation of free and conjugated fatty acids into glycerol-based phospholipids. Exp Parasitol 1999; 92:1–11.CrossRefPubMedGoogle Scholar
  78. 78.
    Das S, Castillo C, Stevens T. Phospholipid remodeling/generation in Giardia: the role of the Lands cycle. Trends Parasitol 2001; 17:316–319.CrossRefPubMedGoogle Scholar
  79. 79.
    Mohareb EW, Rogers EJ, Weiner EJ et al. Giardia lamblia: phospholipid analysis of human isolates. Ann Trop Med Parasitol 1991; 85:591–597.PubMedGoogle Scholar
  80. 80.
    Sonda S, Stefanic S, Hehl AB. A sphingolipid inhibitor induces a cytokinesis arrest and blocks stage differentiation in Giardia lamblia. Antimicrob Agents Chemother 2008; 52:563–569.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Kai Zhang
    • 1
  • James D. Bangs
    • 2
  • Stephen M. Beverley
    • 3
  1. 1.Department of Biological SciencesTexas Tech UniversityLubbockUSA
  2. 2.Department of Medical Microbiology and ImmunologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  3. 3.Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations