Terrestrial Neutron-Induced Failures in Semiconductor Devices and Relevant Systems and Their Mitigation Techniques

  • Nobuyasu Kanekawa
  • Eishi H. Ibe
  • Takashi Suga
  • Yutaka Uematsu


Scaling down of semiconductor devices to sub-100 nm technology encounters a wide variety of technical challenges like V th variation [1], negative bias temperature instability (NBTI) [2], short-channel effect [3], gate leakage [4], and so on. Terrestrial neutron-induced single-event upset (SEU) is one of such key issues that can be a major setback in scaling.


Neutron Energy Neutron Beam Storage Node Soft Error Static Random Access Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Sugii, R. Tsuchiya, T. Ishigaki, Y. Morita, H. Yoshimoto, K. Torii, and S. Kimura, “Comprehensive Study on V th Variability in Silicon on Thin BOX (SOTB) CMOS with Small Random-Dopant Fluctuation: Finding a Way to Further Reduce Variation,” IEDM, San Francisco, December 15–17, pp. 249–253 (2008).Google Scholar
  2. 2.
    R. Duarte, L. Martins-Filho, G. Knop, and R. Prado, “A Fault-Tolerant Attitude Determination System Based on COTS Devices,” IOLTS 2008, Greece, July 6–9, 2008, No.4.3, pp. 85–92 (2008).Google Scholar
  3. 3.
    D. Villanueva, A. Pouydebasque, E. Robilliart, T. Skotnicki, E. Fuchs, and H. Jaoue, “Impact of the Lateral Source/Drain Abruptness on MOSFET Characteristics and Transport Properties,” 2003 IEDM, Washington, DC, December 7–10, 2003, No.9.4 (2003).Google Scholar
  4. 4.
    H.-S. P. Wong, “Beyond the Conventional Transistor,” IBM J. Res. Develop., Vol. 46, No. 2/3, pp. 133–168 (2002).CrossRefGoogle Scholar
  5. 5.
    E. Ibe, “Current and Future Trend on Cosmic-Ray-Neutron Induced Single Event Upset at the Ground Down to 0.1-Micron-Device,” The Svedberg Laboratory Workshop on Applied Physics, Uppsala, May 3, 2001, No.1 (2001).Google Scholar
  6. 6.
    JEDEC, “Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices: JESD89A,” JEDEC STANDARD, JEDEC Sold State Technology Association, Arlington, VA., USA, No.89, pp. 1–85 (2006).Google Scholar
  7. 7.
    JEITA, “JEITA SER Testing Guideline,” EIAJ EDR-4705, Tokyo, Japan, pp. 1–62 (2005).Google Scholar
  8. 8.
    IEC, “Part 38: Soft Error Test Method for Semiconductor Devices with Memory,” Semiconductor Devices. Mechanical and Climatic Test Methods,” IEC60749-38, Edition 1.0, pp. 1–9 (2008).Google Scholar
  9. 9.
    Automotive Electronics Council, “Failure Mechanism Based Stress Test Qualification for Integrated Circuits,” AEC-Q100-Rev.G, May 14 (2007).Google Scholar
  10. 10.
    T. Heijmen, E. Ibe, P. Roche, F. Vermunt, and A. Bougerol, “Panel:SER in Automotive: What is the Impact of the AEC-Q100-G Spec?,” IOLTS 2008, Greece, July 6–9, 2008, No.S3, p. 161 (2008).Google Scholar
  11. 11.
    D. Radaelli, H. Puchner, P. Chia, S. Wong, and S. Daniel, “Investigation of Multi-Bit Upsets in a 150 nm Technology SRAM Device,” Trans. Nucl. Sci., Vol. 52, No. 6, pp. 2433–2437 (2005).CrossRefGoogle Scholar
  12. 12.
    O. Musseau, Gardic P. Roche, T. Corbiere, R.A. Reed, S. Buchner, et al., “Analysis of Multiple Bit Upsets in a CMOS SRAM,” Trans. Nucl. Sci., Vol. 43, No. 6, pp. 2879–2888 (1996).CrossRefGoogle Scholar
  13. 13.
    J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of Multi-Bit Soft Error Events in Advanced SRAMs,” 2003 IEEE International Electron Devices Meeting, Washington, DC, December 7–10, 2003, No.21.4 (2003).Google Scholar
  14. 14.
    E. Ibe, H. Kameyama, Y. Yahagi, K. Nishimoto, and Y. Takahashi, “Distinctive Asymmetry in Neutron-Induced Multiple Error Patterns of 0.13 μm Process SRAM,” The 6th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, Tsukuba, October 6–8, 2004, pp. 19–23 (2004).Google Scholar
  15. 15.
    N. Seifert, and V. Zia, “Assessing the Impact of Scaling on the Efficacy of Spatial Redundancy Based Mitigation Schemes for Terrestrial Applications,” SELSE3, Austin, TX, April 3, 4, 2007 (2007).Google Scholar
  16. 16.
    E. Ibe, S. Chung, S. Wen, H. Yamaguchi, Y. Yahagi, H. Kameyama, S. Yamamoto, and T. Akioka, “Spreading Diversity in Multi-Cell Neutron-Induced Upsets with Device Scaling,” 2006 CICC, San Jose, CA, September 10–13, pp. 437–444 (2006).Google Scholar
  17. 17.
    K. Pagiamtzis, N. Azizi, and F. Najm, “A Soft-Error Tolerant Content-Addressable Memory (CAM) Using An Error-Correcting-Match Scheme,” Idem., pp. 301–304 (2006).Google Scholar
  18. 18.
    B.D. Olson, D. Ball, K.M. Warren, L.W. Massengill, N.F. Haddad, S.E. Doyle, and D. McMorrow, “Simultaneous Single Event Charge Sharing and Parasitic Bipolar Conduction in a Highly-Scaled SRAM Design,” Trans. Nucl. Sci., Vol. 52, No. 6, pp. 2132–2136 (2005).CrossRefGoogle Scholar
  19. 19.
    O.A. Amusan, L.W. Massengill, B.L. Bhuva, P.R. Fleming, and M.L. Alles, “Charge Collection and Sharing in a 130 nm CMOS Technology,” Trans. Nucl. Sci., Vol. 53, No. 6, pp. 3253–3258 (2006).CrossRefGoogle Scholar
  20. 20.
    O.A. Amusan, L.W. Massengill, M.P. Baze, B.L. Bhuva, A.F. Witulski, J.D. Black, A. Balasubramanian, M.C. Casey, D.A. Black, J.R. Ahlbin, R.A. Reed, and M.W. McCurdy, “Mitigation Techniques for Single Event Induced Charge Sharing in a 90 nm Bulk CMOS Process,” IRPS 2008, Phoenix, Arizona, April 27–May 1, No.5A.1 (2008).Google Scholar
  21. 21.
    K. Osada, K Yamaguchi, Y. Saitoh, and T. Kawahara, “Cosmic-Ray Multi-Error Immunity for SRAM, Based on Analysis of the Parasitic Bipolar Effect,” Symp. VLSI Circuits Dig., pp. 255–256 (2003).Google Scholar
  22. 22.
    T. Nakauchi, N. Mikami, A. Oyama, H. Kobayashi, H. Usui, and J. Kase, “A Novel Technique for Mitigating Neutron-Induced Multi-Cell Upset by Means of Back Bias,” IRPS 2008, Phoenix, Arizona, April 27–May 1, 2008, No.2F.2, pp. 187–191 (2008).Google Scholar
  23. 23.
    M. Baze, J. Wert, J. Clement, M. Hubert, A. Witulski, O.A. Amusan, L. Massengill, and D. McMorrow, “Propagating SET Characterization Technique for Digital CMOS Libraries,” Trans. Nucl. Sci., Vol. 53, No. 6, pp. 3472–3478 (2006).CrossRefGoogle Scholar
  24. 24.
    V. Ferlet-Cavrois, V. Pouget, D. McMorrow, J.R. Schwank, N. Fel, F. Essely, R.S. Flores, P. Paillet, M. Gaillardin, D. Kobayashi, J.S. Melinger, O. Duhamel, P.E. Dodd, and M.R. Shaneyfelt, “Investigation of the Propagation Induced Pulse Broadening (PIPB) Effect on Single Event Transients in SOI and Bulk Inverter Chains,” Trans. Nucl. Sci., Vol. 55, No. 6, pp. 2842–2853 (2008).CrossRefGoogle Scholar
  25. 25.
    E.H. Cannon, and M., Cabanas-Holmen, “Heavy Ion and High Energy Proton-Induced Single Event Transients in 90 nm Inverter, NAND and NOR Gates,” Trans. Nucl. Sci., Vol. 56, No. 6, pp. 3511–3518 (2009).CrossRefGoogle Scholar
  26. 26.
    T. Makino, D. Kobayash, K. Hirose, D. Takahashi, S. Ishii, M. Kusano, S. Onoda, T. Hirao, and T. Ohshima, “Soft-Error Rate in a Logic LSI Estimated from SET Pulse-Width Measurements,” Idem., pp. 3180–3184 (2009).Google Scholar
  27. 27.
    T. Calin, M. Nicolaidis, and R. Velazco, “Upset Hardened Memory Design for Submicron CMOS Technology,” Trans. Nucl. Sci., Vol. 43, No. 6, pp. 2874–2878 (1993).CrossRefGoogle Scholar
  28. 28.
    S. Mitra, M. Zhang, N. Seifert, T. Mak, and K.S. Kim, “Built-In Soft Error Resilience for Robust System Design,” ICICDT2007, Austin, TX, May 18–20, pp. 263–268 (2009).Google Scholar
  29. 29.
    T. Uemura, Y. Tosaka, H. Matsuyama, K. Shono, K. Takahisa, M. Fukuda, and K. Hatanaka, “Robust Against Soft-Error Latch for Protecting SEU by Charge Sharing and SET on Inter-Clock,” IRPS 2010, Anaheim, CA, USA, May 2–6 (2010).Google Scholar
  30. 30.
    H.-H. Lee, K. Lilja, and S. Mitra, “Design of a Sequential Logic Cell Using LEAP: Layout Design Through Error Aware Placement,” SELSE6, Stanford University, Stanford, CA, USA, March 23, 24 (2010).Google Scholar
  31. 31.
    M. Cabanas-Holmen, E.H. Cannon, A. Kleinosowski, J. Ballast, J. Killens, and J. Socha, “Clock and Reset Transients in a 90 nm RHBD Single-Core Tilera Processor,” Trans. Nucl. Sci., Vol. 53, No. 6, pp. 3505–3510 (2009).Google Scholar
  32. 32.
    N. Seifert, B. Gill, M. Zhang, V. Zia, and V. Ambrose, “On the Scalability of Redundancy Based SER Mitigation Schemes,” ICICDT2007, Austin, TX, May 18–20, No.G2, pp. 197–205 (2007).Google Scholar
  33. 33.
    A. Lesea, and K. Castellani-Coulie, “Experimental Study and Analysis of Soft Errors in 90 nm Xilinx FPGA and Beyond,” 2007 RADECS, Deauville, France, September 10–14, No.DWL-13 (2007).Google Scholar
  34. 34.
    D. Skarin, and J. Karlsson, “Software Mechanisms for Tolerating Soft Errors in an Automotive Brake-Controller,” WDSN, Estoril, Lisbon, Portugal, June 29, 2009, pp. D34–D38.Google Scholar
  35. 35.
    S. Wen, A. Silburt, and R. Wong, “IC Component SEU Impact Analysis,” SELSE4, University of Texas at Austin, Austin, TX, March, 26, 27 (2008).Google Scholar
  36. 36.
    E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Scaling Effects on Neutron-Induced Soft Error in SRAMs Down to 22 nm Process,” WDSN, Estoril, Lisbon, Portugal, June 29 (2009).Google Scholar
  37. 37.
    E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of Scaling on Neutron-Induced Soft Error in SRAMs from a 250 to a 22 nm Design Rule,” IEEE Trans. Electron Devices, Vol. 57, No. 7, pp. 1527–1538 (2010).Google Scholar
  38. 38.
    T. Nakamura, M. Baba, E. Ibe, Y. Yahagi, and H. Kameyama, “Terrestrial Neutron-Induced Sift-Errors in Advanced Memory Devices,” New Jersey, World Scientific (2008).CrossRefGoogle Scholar
  39. 39.
    C. Hu, “Alpha-Particle-Induced Field and Enhanced Collection of Carriers,” IEEE Electron Device Lett., EDL-3, No. 2, pp. 31–34 (1982).CrossRefGoogle Scholar
  40. 40.
    E. Ibe, Y. Yahagi, F. Kataoka, Y. Saito, A. Eto, and M. Sato, “A Self-Consistent Integrated System for Terrestrial-Neutron Induced Single Event Upset of Semiconductor Devices at the Ground,” 2002 ICITA, Bathurst, Australia, November 25–28, 2002, No.273–221 (2002).Google Scholar
  41. 41.
    Y. Yahagi, E. Ibe, Y. Saito, A. Eto, and M. Sato, “Self-Consistent Integrated System for Susceptibility to Terrestrial-Neutron Induced Soft-Error of Sub-quarter Micron Memory Devices,” 2002 International Integrated Reliability Workshop, Stanford Sierra Camp, S. Lake Tahoe, CA, pp. 143–143 (2002).Google Scholar
  42. 42.
    E. Ibe, S. Chung, S. Wen, Y. Yahagi, H. Kameyama, S. Yamamoto, T. Akioka, and H. Yamaguchi, “Valid and Prompt Track-Down Algorithms for Multiple Error Mechanisms in Neutron-Induced Single Event Effects of Memory Devices,” RADECS, Athens, Greece, September 27–29, 2006, No. D-2 (2006).Google Scholar
  43. 43.
    K. Johansson, P. Dyreklev, B. Granbom, N. Olsson, J. Blomgren, and P-U. Renberg, “Energy-Resolved Neutron SEU Measurements from 22 to 13.0 MeV,” Trans. Nucl. Sci., Vol. 45, No. 6, pp. 2519–2526 (1998).CrossRefGoogle Scholar
  44. 44.
    A.V. Prokofiev, O. Bystrom, C. Ekstrom, V. Ziemann, J. Blomgren, U.S. Pomp, S., M. Osterlund, and U. Tippawan, “The TSL Neutron Beam Facility,” 10th Symposium on Neutron Dosimetry, Uppsala, Sweden, June 12–13, 2003, Lecture A1–4 (2006).Google Scholar
  45. 45.
    M. Baba, H. Okamura, M. Hagiwara, T. Itoga, S. Kamada, Y. Yahagi, and E. Ibe, “Installation and Application of An Intense 7Li(p,n) Neutron Source for 20–90 MeV Region,” Radiat. Prot. Dosimetry, Vol. 123, No. 1–4, pp. 13–17 (2007).CrossRefGoogle Scholar
  46. 46.
    H.W. Bertini, A.H. Culkowski, O.W. Hermann, N.B. Gove, and M.P. Guthrie, “High Nnergy (E < 100 GeV) Intranuclear Cascade Model for Nucleons and Pions Incident on Nuclei and Comparisons with Experimental Data,” Phys. Rev. C, Vol. 17, No. 4, pp. 1382–1394 (1978).CrossRefGoogle Scholar
  47. 47.
    I. Dostrovsky, Z. Fraenkel, and G. Friedlander, “Monte Carlo Calculations of Nuclear Evaporation Process. III. Applications to Low-Energy Reactions,” Phys. Rev., Vol. 113, No. 3, pp. 3.83–702 (1959).Google Scholar
  48. 48.
    E. Ibe, Y. Yahagi, H. Kameyama, and Y. Takahashi, “Single Event Effects of Semiconductor Devices at the Ground,” Ionizing Radiat, Vol. 30, No. 7, pp. 263–281 (2004).Google Scholar
  49. 49.
    S. Furihata, “Parameters Used in GEM”, Thesis for PhD, Tohoku University, pp. 18–20 (2002)Google Scholar
  50. 50.
    F. Bertland, and R. Peele, “Complete Hydrogen and Herium Particle Spectra from 30- to 60-MeV Proton Bombardment of Nuclei with A=12 to 209 and Comparison with the Intranuclear Cascade Model,” Phys. Rev. C, Vol. 8, No. 3, pp. 1045–1064 (1973).CrossRefGoogle Scholar
  51. 51.
    K.M. Warren, J.D. Wilkinson, R.A. Weller, B.D. Sierawski, R.A. Reed, M.E. Porter, M.H. Mendenhall, and R.D. Schrimpf, L.W. Massengill, “Predicting Neutron Induced Soft Error Rates: Evaluation of Accelerated Ground Based Test Methods,” IRPS 2008, Phoenix, AZ, April 27–May 1, No.5A.2, pp. 473–477 (2008)Google Scholar
  52. 52.
    P.W. Lisowski, “The Los Alamos National Laboratory Spallation Neutron Sources,” Nucl. Sci. Eng., Vol. 103, pp. 208–218 (1990).Google Scholar
  53. 53.
    M. Baba, M. Takada, T. Iwasaki, S. Matsuyama, T. Nakamura, H. Ohguchi, T. Nakao, T. Sanami and N. Hirakawa, “Development of Monoenergetic Neutron Calibration Fields Between 8 keV and 15 MeV,” Nucl. Instrum. Methods Phys. Res. A, Vol. 376, pp. 115–123 (1996).CrossRefGoogle Scholar
  54. 54.
    A. Dixit, R. Heald, and A. Wood, “Trends from Ten Years of Soft Error Experimentation,” SELSE 5, Stanford University, Stanford, CA, March 24, 25 (2009).Google Scholar
  55. 55.
    S. Wen, “Systematical Method of Quantifying SEU FIT,” IOLTS 2008, Greece, July 6–9, 2008, pp. 109–116 (2008).Google Scholar
  56. 56.
    G. Schindlbeck, and C. Slayman, “Neutron-Induced Logic Soft Errors in DRAM Technology and Their Impact on Reliable Server Memory,” SELSE3, Austin, TX, April 3, 4, 2007 (2007).Google Scholar
  57. 57.
    R.C. Baumann, and E.B. Smith, “Neutron-Induced Boron Fission as a Major Source of Soft Errors in Deep Submicron SRAM Devices,” 2000 IEEE Int'l Reliability Physics Symposium Proceedings, San Jose, CA, April 10–13, pp. 152–157 (2000).Google Scholar
  58. 58.
    E.W. Blackmore, “Development of a Large Area Neutron Beam for System Testing at TRIUMF,” 2009 IEEE Radiation Effects Data Workshop, Quebec City, Canada, July 20–24, pp. 157–160 (2009).Google Scholar
  59. 59.
    A.V. Prokofiev, J. Blomgren, R. Nolte, S. Rottger, S.P. Platt, and A.N. Smirnov, “Characterization of the ANITA Neutron Source for Accelerated SEE Testing at The Svedberg Laboratory,” Idem., pp. 166–173 (2009).Google Scholar
  60. 60.
    H. Sakai, H. Okamura, H. Otus, T. Wakasa, S. Ishida, N. Sakamoto, T. Uesaka, Y. Satou, S. Fujita, and K. Hatanaka, “Facility for the (p,n) polarization transfer measurement,” Nucl. Instrum. Methods Phys. Res.. Section A, Vol. 369, pp. 120–134 (1996).CrossRefGoogle Scholar
  61. 61.
    S.P. Platt, and Z. Torok, “Charge-Collection and Single-Event Upset Measurements at the Isis Neutron Source,” 2007 RADECS, Deauville, France, September 10–14, 2007, No.F-2 (2007).Google Scholar
  62. 62.
    H. Kobayashi, H. Usuki, K. Shiraishi, H. Tsuchiya, N. Kawamoto, G. Kase, and J. Merchant, “Comparison Between Neutron-Induced System-SER and Accelerated-SER in SRAMs,” 2004 IRPS, April 25–29, Phoenix, AZ, pp. 288–293 (2004).Google Scholar
  63. 63.
    A. Lesea, and J. Fabula, “Continuing Experiments on Atmospheric Neutron Effects on Deep Sub-micron Integrated Circuits,” RADECS, Athens, Greece, September 27–29, 2006, No.D-4 (2006).Google Scholar
  64. 64.
    J-L. Autran, P. Roche, J. Borel, C. Sudre, C., Castellani-Coulie, D. Muntean, T. Parrassin, G. Gasiot, and J.-P. Schoellkop, “Altitude SEE Test European Platform (ASTEP): Project Overview, First Results in CMOS 130 nm and Perspectives,” Idem., No.D-5 (2003).Google Scholar
  65. 65.
    J.L. Autran, P. Roche, S. Sauze, G. Gasiot, D. Munteanu, P. Loaiza, M. Zampaolo, J. Borel, S. Rozov, and E. Yakushev, “Combined Altitude and Underground Real-Time SER Characterization of CMOS Technologies on the ASTEP-LSM Platform,” ICICDT2007, Austin, TX, May 18–20, pp. 113–120 (2009).Google Scholar
  66. 66.
    Y. Tosaka, R. Takasu, T. Uemura, H. Ehara, H. Matsuyama, S. Satoh, A. Kawai, and M. Hayashi, “Simultaneous Measurement of Soft Error Rate of 90 nm CMOS SRAM and Cosmic Ray Neutron Spectra at the Summit of Mauna Kea,” IRPS 2008, Phoenix, AZ, April 27–May 1, 2008, No.SE01, pp. 727–728 (2008).Google Scholar
  67. 67.
    B.D. Sierawski, J.A. Pellish, R.A. Reed, R.D. Schrimpf, K.M. Warren, R.A. Weller, M.H. Mendenhal, A.D. Tipton, M.A. Xapsos, R.C. Baumann, X. Deng, M.J. Campola, M.R. Friendlich, H.S. Kim, A.M. Phan, and C.M. Seidleck, “Impact of Low-Energy Proton Induced Upsets on Test Methods and Rate Predictions,” Trans. Nucl. Sci., Vol. 56, No. 6, pp. 3085–3092 (2009).CrossRefGoogle Scholar
  68. 68.
    B.D. Sierawski, K.M. Warren, R.A. Reed, R.A. Weller, M.M. Mendenhall, R.D. Schrimpf, and R.C. Baumann, “Contribution of Low-Energy Neutrons to Upset Rate in a 65 nm SRAM,” IRPS, Anaheim, CA, USA, May 2–6, 2010, No.197 (2010).Google Scholar
  69. 69.
    D.F. Heidel, P.W. Marshall, J.A. Pellish, K.P. Rodbell, K.A. LaBe, J.R. Schwank, S.E. Rauch, M.C. Hakey, M.D. Berg, C.M. Castaneda, P.E. Dodd, M.R. Friendlich, A.D. Phan, C.M. Seidleck, M.R. Shaneyfelt, and M.A. Xapsos, “Single-Event Upsets and Multiple-Bit Upsets on a 45 nm SOI SRAM,” Trans. Nucl. Sci., Vol. 56, No. 6, pp. 3499–3504 (2009).CrossRefGoogle Scholar
  70. 70.
    R.K. Lawrence, J.F. Ross, N. Haddad, D. Albrect, R.A. Reed, and M.A. McMahan-Norris, “Soft Error Sensitivities in 90 nm Bulk CMOS SRAMs,” 2009 IEEE Radiation Effects Data Workshop, July 20–24, Quebec, Canada, pp. 123–126 (2009).Google Scholar
  71. 71.
    C. Slayman, “Accuracy of Various Broad Spectrum Neutron Sources for Accelerated Soft Error Testing,” SELSE6, Stanford University, Stanford, CA, March 23, 24 (2010).Google Scholar
  72. 72.
    H. Chapman, E. Landman, A. MargalitIlovich, Y.-P. Fang, A.S. Oates, D. Alexandrescu, and O. Lauzeral, “A Multi-Partner Soft Error Rate Analysis of an Infini Band Host Channel Adapter,” SELSE6, Stanford University, Stanford, CA, March 23, 24 (2010).Google Scholar
  73. 73.
    H. Ando, and S. Hatanaka, “Accelerated Testing of a 90 nm SPARC3.4 V Microprocessor for Neutron SER,” SELSE3, Austin, TX, April 3, 4 (2007).Google Scholar
  74. 74.
    A.L. Silburt, A. Evans, I. Perryman, S.-J. Wen, and D. Alexandrescu, “Design for Soft Error Resiliency in Internet Core Routers,” Trans. Nucl. Sci., Vol. 56, No. 6, pp. 3551–3555 (2009).CrossRefGoogle Scholar
  75. 75.
    L. Borucki, G. Schindlbeck, and C. Slayman, “Comparison of Accelerated DRAM Soft Error Rates Measured at Component and System Level,” IRPS 2008, Phoenix, AZ, April 27–May 1, No.5A.4 (2008).Google Scholar
  76. 76.
    K. Shimbo, T. Toba, E. Ibe, and K. Nishi, “Correlation of Mitigation of Soft-Error Rate of Routers Between Neutron Irradiation Test and Field Soft-Error Data,” IEICE Tech. Rep., Vol. 109, No. 317, 318, pp. 51–55 (2009) (In Japanese).Google Scholar
  77. 77.
    E. Ibe, H. Kameyama, Y. Yahagi, and H. Yamaguchi, “Single Event Effects as a Reliability Issue of IT Infrastructure,” ICITA, July 3–7, 2005, Sydney, Vol. I, pp. 555–53.0 (2005).Google Scholar
  78. 78.
    N. Carter, “Cross-Layer Reliability,” SELSE6, Stanford University, Stanford, CA, March 23, 24 (2010).Google Scholar
  79. 79.
    A. Sanyal, S. Alam, and S. Kundu, “A Built-In Self-Test Scheme for Soft Error Rate Characterization,” IOLTS 2008, Greece, July 6–9, 2008, No.3.3, pp. 65–72 (2008).Google Scholar
  80. 80.
    S. Prejean, “Neutron Soft Error Rate Testing of AMD Microprocessors,” SELSE6, Stanford University, Stanford, CA, March 23, 24, 2010 (2010).Google Scholar
  81. 81.
    A. Balasubramanian, B.L. Bhuva, L.W. Massengill, B. Narasimham, R.L. Shuler, T.D. Loveless, and W. T. Holman, “A Built-In Self-Test (BIST) Technique for Single-Event Testing in Digital Circuits,” Trans. Nucl. Sci., Vol. 55, No. 6, pp. 3130–3135 (2009).CrossRefGoogle Scholar
  82. 82.
    T. Wang, Z. Zhang, L. Chen, A. Dinh, and R. Shuler, “A Novel Bulk Built-In Current Sensor for Single-Event Transient Detection,” SELSE6, Stanford University, Stanford, CA, March 23, 24 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nobuyasu Kanekawa
    • 1
  • Eishi H. Ibe
    • 2
  • Takashi Suga
    • 2
  • Yutaka Uematsu
    • 2
  1. 1.Hitachi Research LaboratoryHitachi, Ltd.IbarakiJapan
  2. 2.Production Engineering Research LaboratoryHitachi, Ltd.KanagawaJapan

Personalised recommendations