Removable Sets and Analytic Capacity

Chapter
Part of the Universitext book series (UTX)

Abstract

For now and forevermore, let K be a compact subset of the complex plane ℂ.This will be restated for emphasis many times in what follows but just as often will be tacitly assumed and not mentioned.

Referneces

  1. [ZALC]
    L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Math., Vol. 50, Springer-Verlag (1968). ( Section 1.2)
  2. [VIT2]
    A. G. Vitushkin, Analytic capacity of sets and problems in approximation theory, Russian Math. Surveys, Vol. 22 (1967), 139–200. (Sections 1.2, 6.6, and Postscript)MATHCrossRefGoogle Scholar
  3. [POM]
    Ch. Pommerenke, Über die analytische Kapazität, Archiv der Math., Vol. 11 (1960), 270–277. ( Section 1.2)MathSciNetMATHCrossRefGoogle Scholar
  4. [GAM1]
    T. W. Gamelin, Uniform Algebras, Prentice-Hall (1969). ( Section 1.2 and  3.3)
  5. [YB]
    I. M. Yaglom and V. G. Boltyanski, Convex Figures, Holt, Rinehart and Winston (1961). ( Section 1.2)
  6. [AHL]
    L. Ahlfors, Bounded analytic functions, Duke Math. J., Vol. 14 (1947), 1–11. ( Section 1.2)MathSciNetMATHCrossRefGoogle Scholar
  7. [FISH]
    S. Fisher, On Schwarz’s lemma and inner functions, Trans. Amer. Math. Soc., Vol. 138 (1969), 229–240. ( Section 1.2)MathSciNetMATHGoogle Scholar
  8. [GAR2]
    J. Garnett, Analytic capacity and measure, Lecture Notes in Math., Vol. 297, Springer-Verlag (1972). (Preface and  Sections 1.2,  2.4, and  3.1)
  9. [RUD]
    W. Rudin, Real and Complex Analysis, 3rd Edition, McGraw-Hill Book Company (1987). (Preface and Many Sections)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Lyman Briggs College, Michigan State UniversityEast LansingUSA

Personalised recommendations