Skip to main content

Noncanonical Functions of BCL-2 Proteins in the Nervous System

  • Chapter
BCL-2 Protein Family

Part of the book series: Advances in Experimental Medicine and Biology ((volume 687))

Abstract

BCL-2 family proteins form heterodimers or homo-oligomers to inhibit or induce apoptotic cell death, respectively. They often relocalize from the cytoplasm to mitochondria to carry out these functions. The traditional model is that in healthy cells, anti-death family members hold pro-death BCL-2 family members in check. Upon receiving a death stimulus, another set of proteins (BH3-only proteins) inactivate the protective BCL-2 proteins, forcing them to release their pro-death partners that are subsequently triggered to oligomerize and porate the mitochondrial outer membrane leading to cell death. In support of this traditional view, there is a preponderance of supporting evidence derived from the study of events that occur following treatment of cells with a death stimulus. Knockout and mutant mice also exhibit many developmental and treatment-induced phenotypes consistent with this model of antagonism between BCL-2 family proteins. Emphasis is logically placed on those phenotypes that support the model. However, this working model of BCL-2 family interactions has become so engrained that alternative, potentially valid interpretations are sometimes dismissed. Therefore, it is useful to consider the evidence that seems contrary to accepted models. In particular, the analysis of BCL-2 family functions in the nervous system has revealed unexpected outcomes that can serve to further stimulate critical probing of the yet unknown biochemical functions of BCL-2 proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsujimoto Y, Cossman J, Jaffe E et al. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985;228:1440–1443.

    CAS  PubMed  Google Scholar 

  2. Ohno H, Fukuhara S, Takahashi R et al. C-yes and bcl-2 genes located on 18q21.3 in a follicular lymphoma cell line carrying a t(14;18) chromosomal translocation. Int J Cancer 1987; 39:785–788.

    CAS  PubMed  Google Scholar 

  3. Graninger WB, Seto M, Boutain B et al. Expression of bcl-2 and bcl-2-ig fusion transcripts in normal and neoplastic cells. J Clin Invest 1987; 80:1512–1515.

    CAS  PubMed  Google Scholar 

  4. Weiss LM, Warnke RA, Sklar J et al. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 1987; 317:1185–1189.

    CAS  PubMed  Google Scholar 

  5. Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 1992; 356:494–499.

    CAS  PubMed  Google Scholar 

  6. Yuan J, Shaham S, Ledoux S et al. The c. Elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75:641–652.

    CAS  PubMed  Google Scholar 

  7. Vaux DL, Cory S, Adams JM. BCL-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize preb cells. Nature 1988; 335:440–442.

    CAS  PubMed  Google Scholar 

  8. Henderson S, Huen D, Rowe M et al. Epstein-barr virus-coded bhrf1 protein, a viral homologue of bcl-2, protects human b-cells from programmed cell death. Proc Natl Acad Sci USA 1993; 90:8479–8483.

    CAS  PubMed  Google Scholar 

  9. Adams JM, Cory S. The bcl-2 protein family: Arbiters of cell survival. Science 1998; 281:1322–1326.

    CAS  PubMed  Google Scholar 

  10. Youle RJ, Strasser A. The bcl-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9:47–59.

    CAS  PubMed  Google Scholar 

  11. Fletcher JI, Meusburger S, Hawkins CJ et al. Apoptosis is triggered when prosurvival bcl-2 proteins cannot restrain bax. Proc Natl Acad Sci USA 2008; 105:18081–18087.

    CAS  PubMed  Google Scholar 

  12. Kuwana T, Mackey MR, Perkins G et al. Bid, bax and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111:331–342.

    CAS  PubMed  Google Scholar 

  13. Antonsson B, Montessuit S, Lauper S et al. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 2000; 345(Pt 2):271–278.

    CAS  PubMed  Google Scholar 

  14. Budihardjo I, Oliver H, Lutter M et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15:269–290.

    CAS  PubMed  Google Scholar 

  15. Antonsson B, Conti F, Ciavatta A et al. Inhibition of bax channel-forming activity by bcl-2. Science 1997; 277:370–372.

    CAS  PubMed  Google Scholar 

  16. Kvansakul M, Yang H, Fairlie WD et al. Vaccinia virus anti-apoptotic f1l is a novel bcl-2-like domain-swapped dimer that binds a highly selective subset of bh3-containing death ligands. Cell Death Differ 2008; 15:1564–1571.

    CAS  PubMed  Google Scholar 

  17. Graham SC, Bahar MW, Cooray S et al. Vaccinia virus proteins a52 and b14 share a bcl-2-like fold but have evolved to inhibit nf-kappab rather than apoptosis. PLoS Pathog 2008; 4:e1000128.

    Google Scholar 

  18. Galindo KA, Lu WJ, Park JH et al. The bax/bak ortholog in drosophila, debcl, exerts limited control over programmed cell death. Development 2009; 136:275–283.

    CAS  PubMed  Google Scholar 

  19. Bellows DS, Howell M, Pearson C et al. Epstein-barr virus balf1 is a bcl-2-like antagonist of the herpesvirus antiapoptotic bcl-2 proteins. J Virol 2002; 76:2469–2479.

    CAS  PubMed  Google Scholar 

  20. Huang DC, Strasser A. Bh3-only proteins-essential initiators of apoptotic cell death. Cell 2000; 103:839–842.

    CAS  PubMed  Google Scholar 

  21. Cheng EH, Wei MC, Weiler S et al. BCL-2, bcl-x(l) sequester bh3 domain-only molecules preventing bax-and bak-mediated mitochondrial apoptosis. Mol Cell 2001; 8:705–711.

    CAS  PubMed  Google Scholar 

  22. Letai A, Bassik MC, Walensky LD et al. Distinct bh3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2:183–192.

    CAS  PubMed  Google Scholar 

  23. Billen LP, Kokoski CL, Lovell JF et al. Bcl-xl inhibits membrane permeabilization by competing with bax. PLoS Biol 2008; 6:e147.

    Google Scholar 

  24. Day CL, Smits C, Fan FC et al. Structure of the bh3 domains from the p53-inducible bh3-only proteins noxa and puma in complex with mcl-1. J Mol Biol 2008; 380:958–971.

    CAS  PubMed  Google Scholar 

  25. Hinds MG, Smits C, Fredericks-Short R et al. Bim, bad and bmf: Intrinsically unstructured bh3-only proteins that undergo a localized conformational change upon binding to prosurvival bcl-2 targets. Cell Death Differ 2007; 14:128–136.

    CAS  PubMed  Google Scholar 

  26. Oltersdorf T, Elmore SW, Shoemaker AR et al. An inhibitor of bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435:677–681.

    CAS  PubMed  Google Scholar 

  27. Deng J, Carlson N, Takeyama K et al. Bh3 profiling identifies three distinct classes of apoptotic blocks to predict response to abt-737 and conventional chemotherapeutic agents. Cancer Cell 2007; 12:171–185.

    CAS  PubMed  Google Scholar 

  28. Park CM, Bruncko M, Adickes J et al. Discovery of an orally bioavailable small molecule inhibitor of prosurvival b-cell lymphoma 2 proteins. J Med Chem 2008; 51:6902–6915.

    CAS  PubMed  Google Scholar 

  29. Danial NN, Walensky LD, Zhang CY et al. Dual role of proapoptotic bad in insulin secretion and beta cell survival. Nat Med 2008; 14:144–153.

    CAS  PubMed  Google Scholar 

  30. Gavathiotis E, Suzuki M, Davis ML et al. Bax activation is initiated at a novel interaction site. Nature 2008; 455:1076–1081.

    CAS  PubMed  Google Scholar 

  31. Zhong Q, Gao W, Du F et al. Mule/arf-bp1, a bh3-only e3 ubiquitin ligase, catalyzes the polyubiquitination of mcl-1 and regulates apoptosis. Cell 2005; 121:1085–1095.

    CAS  PubMed  Google Scholar 

  32. Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the bcl-xl-beclin 1 peptide complex: Beclin 1 is a novel bh3-only protein. J Biol Chem 2007; 282:13123–13132.

    CAS  PubMed  Google Scholar 

  33. Mihara M, Erster S, Zaika A et al. P53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11:577–590.

    CAS  PubMed  Google Scholar 

  34. White C, Li C, Yang J et al. The endoplasmic reticulum gateway to apoptosis by bcl-x(l) modulation of the insp3r. Nat Cell Biol 2005; 7:1021–1028.

    CAS  PubMed  Google Scholar 

  35. Puthalakath H, Villunger A, O’Reilly LA et al. Bmf: A proapoptotic bh3-only protein regulated by interaction with the myosin v actin motor complex, activated by anoikis. Science 2001; 293:1829–1832.

    CAS  PubMed  Google Scholar 

  36. Pattingre S, Tassa A, Qu X et al. BCL-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell 2005; 122:927–939.

    CAS  PubMed  Google Scholar 

  37. Delivani P, Adrain C, Taylor RC et al. Role for ced-9 and egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol Cell 2006; 21:761–773.

    CAS  PubMed  Google Scholar 

  38. Guo JY, Yamada A, Kajino T et al. Aven-dependent activation of atm following DNA damage. Curr Biol 2008; 18:933–942.

    CAS  PubMed  Google Scholar 

  39. Cheng EH, Levine B, Boise LH et al. Bax-independent inhibition of apoptosis by bcl-xl. Nature 1996; 379:554–556.

    CAS  PubMed  Google Scholar 

  40. Cheng EH, Sheiko TV, Fisher JK et al. Vdac2 inhibits bak activation and mitochondrial apoptosis. Science 2003; 301:513–517.

    CAS  PubMed  Google Scholar 

  41. Kim H, Rafiuddin-Shah M, Tu HC et al. Hierarchical regulation of mitochondrion-dependent apoptosis by bcl-2 subfamilies. Nat Cell Biol 2006; 8:1348–1358.

    CAS  PubMed  Google Scholar 

  42. Hsu YT, Youle RJ. Nonionic detergents induce dimerization among members of the bcl-2 family. J Biol Chem 1997;272:13829–13834.

    CAS  PubMed  Google Scholar 

  43. Basanez G, Nechushtan A, Drozhinin O et al. Bax, but not bcl-xl, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad Sci USA 1999; 96:5492–5497.

    CAS  PubMed  Google Scholar 

  44. Basanez G, Sharpe JC, Galanis J et al. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 2002; 277:49360–49365.

    CAS  PubMed  Google Scholar 

  45. Kane DJ, Ord T, Anton R et al. Expression of bcl-2 inhibits necrotic neural cell death. J Neurosci Res 1995; 40:269–275.

    CAS  PubMed  Google Scholar 

  46. Dickman MB, Park YK, Oltersdorf T et al. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci USA 2001; 98:6957–6962.

    CAS  PubMed  Google Scholar 

  47. Krajewska M, Mai JK, Zapata JM et al. Dynamics of expression of apoptosis-regulatory proteins bid, bcl-2, bcl-x, bax and bak during development of murine nervous system. Cell Death Differ 2002; 9:145–157.

    CAS  PubMed  Google Scholar 

  48. Krajewski S, Krajewska M, Shabaik A et al. Immunohistochemical determination of in vivo distribution of bax, a dominant inhibitor of bcl-2. Am J Pathol 1994; 145:1323–1336.

    CAS  PubMed  Google Scholar 

  49. Krajewski S, Krajewska M, Shabaik A et al. Immunohistochemical analysis of in vivo patterns of bcl-x expression. Cancer Res 1994; 54:5501–5507.

    CAS  PubMed  Google Scholar 

  50. Arbour N, Vanderluit JL, Le Grand JN et al. Mcl-1 is a key regulator of apoptosis during cns development and after DNA damage. J Neurosci 2008; 28:6068–6078.

    CAS  PubMed  Google Scholar 

  51. O’Reilly LA, Print C, Hausmann G et al. Tissue expression and subcellular localization of the pro-survival molecule bcl-w. Cell Death Differ 2001; 8:486–494.

    PubMed  Google Scholar 

  52. Uo T, Kinoshita Y, Morrison RS. Neurons exclusively express n-bak, a bh3 domain-only bak isoform that promotes neuronal apoptosis. J Biol Chem 2005; 280:9065–9073.

    CAS  PubMed  Google Scholar 

  53. Fu NY, Sukumaran SK, Kerk SY et al. Baxbeta: A constitutively active human bax isoform that is under tight regulatory control by the proteasomal degradation mechanism. Mol Cell 2009; 33:15–29.

    CAS  PubMed  Google Scholar 

  54. Lindsten T, Ross AJ, King A et al. The combined functions of proapoptotic bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000; 6:1389–1399.

    CAS  PubMed  Google Scholar 

  55. Whitmore AV, Lindsten T, Raff MC et al. The proapoptotic proteins bax and bak are not involved in wallerian degeneration. Cell Death Differ 2003; 10:260–261.

    CAS  PubMed  Google Scholar 

  56. Glebova NO, Ginty DD. Heterogeneous requirement of ngf for sympathetic target innervation in vivo. J Neurosci 2004; 24:743–751.

    CAS  PubMed  Google Scholar 

  57. Liu QA, Shio H. Mitochondrial morphogenesis, dendrite development and synapse formation in cerebellum require both bcl-w and the glutamate receptor delta2. PLoS Genet 2008; 4:e1000097.

    Google Scholar 

  58. Murphy B, Dunleavy M, Shinoda S et al. BCL-2 protects hippocampus during experimental status epilepticus. Am J Pathol 2007; 171:1258–1268.

    CAS  PubMed  Google Scholar 

  59. Veis DJ, Sorenson CM, Shutter JR et al. BCL-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys and hypopigmented hair. Cell 1993; 75:229–240.

    CAS  PubMed  Google Scholar 

  60. Merry DE, Veis DJ, Hickey WF et al. BCL-2 protein expression is widespread in the developing nervous system and retained in the adult pns. Development 1994; 120:301–311.

    CAS  PubMed  Google Scholar 

  61. Michaelidis TM, Sendtner M, Cooper JD et al. Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron 1996; 17:75–89.

    CAS  PubMed  Google Scholar 

  62. Motoyama N, Wang F, Roth KA et al. Massive cell death of immature hematopoietic cells and neurons in bcl-x-deficient mice. Science 1995; 267:1506–1510.

    CAS  PubMed  Google Scholar 

  63. Zhang J, Chen YB, Hardwick JM et al. Magnetic resonance diffusion tensor microimaging reveals a role for bcl-x in brain development and homeostasis. J Neurosci 2005; 25:1881–1888.

    CAS  PubMed  Google Scholar 

  64. Savitt JM, Jang SS, Mu W et al. Bcl-x is required for proper development of the mouse substantia nigra. J Neurosci 2005; 25:6721–6728.

    CAS  PubMed  Google Scholar 

  65. Berman SB, Chen YB, Qi B et al. Bcl-xl increases mitochondrial fission, fusion and biomass in neurons. J Cell Biol 2009; 184:707–719.

    CAS  PubMed  Google Scholar 

  66. Shindler KS, Latham CB, Roth KA. Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice. J Neurosci 1997; 17:3112–3119.

    CAS  PubMed  Google Scholar 

  67. Akhtar RS, Ness JM, Roth KA. BCL-2 family regulation of neuronal development and neurodegeneration. Biochim Biophys Acta 2004; 1644:189–203.

    CAS  PubMed  Google Scholar 

  68. Roth KA, D’Sa C. Apoptosis and brain development. Ment Retard Dev Disabil Res Rev 2001; 7:261–266.

    CAS  PubMed  Google Scholar 

  69. Akhtar RS, Geng Y, Klocke BJ et al. Bh3-only proapoptotic bcl-2 family members noxa and puma mediate neural precursor cell death. J Neurosci 2006; 26:7257–7264.

    CAS  PubMed  Google Scholar 

  70. Geng Y, Akhtar RS, Shacka JJ et al. P53 transcription-dependent and-independent regulation of cerebellar neural precursor cell apoptosis. J Neuropathol Exp Neurol 2007; 66:66–74.

    CAS  PubMed  Google Scholar 

  71. Akhtar RS, Klocke BJ, Strasser A et al. Loss of bh3-only protein bim inhibits apoptosis of hemopoietic cells in the fetal liver and male germ cells but not neuronal cells in bcl-x-deficient mice. J Histochem Cytochem 2008; 56:921–927.

    CAS  PubMed  Google Scholar 

  72. Wagner KU, Claudio E, Rucker EB, 3rd et al. Conditional deletion of the bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development 2000; 127:4949–4958.

    CAS  PubMed  Google Scholar 

  73. Qi B, Hardwick JM. A bcl-xl timer sets platelet life span. Cell 2007; 128:1035–1036.

    CAS  PubMed  Google Scholar 

  74. Mason KD, Carpinelli MR, Fletcher JI et al. Programmed anuclear cell death delimits platelet life span. Cell 2007; 128:1173–1186.

    CAS  PubMed  Google Scholar 

  75. Doonan F, Donovan M, Gomez-Vicente V et al. Bim expression indicates the pathway to retinal cell death in development and degeneration. J Neurosci 2007; 27:10887–10894.

    CAS  PubMed  Google Scholar 

  76. Hetz C, Thielen P, Fisher J et al. The proapoptotic bcl-2 family member bim mediates motoneuron loss in a model of amyotrophic lateral sclerosis. Cell Death Differ 2007; 14:1386–1389.

    CAS  PubMed  Google Scholar 

  77. McKernan DP, Cotter TG. A critical role for bim in retinal ganglion cell death. J Neurochem 2007; 102:922–930.

    CAS  PubMed  Google Scholar 

  78. Bouillet P, Cory S, Zhang LC et al. Degenerative disorders caused by bcl-2 deficiency prevented by loss of its bh3-only antagonist bim. Dev Cell 2001; 1:645–653.

    CAS  PubMed  Google Scholar 

  79. Lewis J, Wesselingh SL, Griffin DE et al. Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J Virol 1996; 70:1828–1835.

    CAS  PubMed  Google Scholar 

  80. Lewis J, Oyler GA, Ueno K et al. Inhibition of virus-induced neuronal apoptosis by bax. Nat Med 1999; 5:832–835.

    CAS  PubMed  Google Scholar 

  81. Levine B, Huang Q, Isaacs JT et al. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 1993; 361:739–742.

    CAS  PubMed  Google Scholar 

  82. Levine B, Goldman JE, Jiang HH et al. Bc1-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci USA 1996; 93:4810–4815.

    CAS  PubMed  Google Scholar 

  83. Irusta PM, Hardwick JM. Neuronal apoptosis pathways in sindbis virus encephalitis. Prog Mol Subcell Biol 2004; 36:71–93.

    PubMed  Google Scholar 

  84. Cheng EH, Kirsch DG, Clem RJ et al. Conversion of bcl-2 to a bax-like death effector by caspases. Science 1997; 278:1966–1968.

    CAS  PubMed  Google Scholar 

  85. Kirsch DG, Doseff A, Chau BN et al. Caspase-3-dependent cleavage of bcl-2 promotes release of cytochrome c. J Biol Chem 1999; 274:21155–21161.

    CAS  PubMed  Google Scholar 

  86. Clem RJ, Cheng EH, Karp CL et al. Modulation of cell death by bcl-xl through caspase interaction. Proc Natl Acad Sci USA 1998; 95:554–559.

    CAS  PubMed  Google Scholar 

  87. Grandgirard D, Studer E, Monney L et al. Alphaviruses induce apoptosis in bcl-2-overexpressing cells: Evidence for a caspase-mediated, proteolytic inactivation of bcl-2. EMBO J 1998; 17:1268–1278.

    CAS  PubMed  Google Scholar 

  88. Basanez G, Zhang J, Chau BN et al. Pro-apoptotic cleavage products of bcl-xl form cytochrome c-conducting pores in pure lipid membranes. J Biol Chem 2001; 276:31083–31091.

    CAS  PubMed  Google Scholar 

  89. Kelekar A, Thompson CB. BCL-2-family proteins: The role of the bh3 domain in apoptosis. Trends Cell Biol 1998; 8:324–330.

    CAS  PubMed  Google Scholar 

  90. Seo SY, Chen YB, Ivanovska I et al. Bad is a pro-survival factor prior to activation of its pro-apoptotic function. J Biol Chem 2004; 279:42240–42249.

    CAS  PubMed  Google Scholar 

  91. Condorelli F, Salomoni P, Cotteret S et al. Caspase cleavage enhances the apoptosis-inducing effects of bad. Mol Cell Biol 2001; 21:3025–3036.

    CAS  PubMed  Google Scholar 

  92. Datta SR, Dudek H, Tao X et al. Akt phosphorylation of bad couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91:231–241.

    CAS  PubMed  Google Scholar 

  93. Wood DE, Thomas A, Devi LA et al. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 1998; 17:1069–1078.

    CAS  PubMed  Google Scholar 

  94. Chen D, Zhou Q. Caspase cleavage of bimel triggers a positive feedback amplification of apoptotic signaling. Proc Natl Acad Sci USA 2004; 101:1235–1240.

    CAS  PubMed  Google Scholar 

  95. Gomez-Bougie P, Wuilleme-Toumi S, Menoret E et al. Noxa up-regulation and mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res 2007; 67:5418–5424.

    CAS  PubMed  Google Scholar 

  96. Michels J, Johnson PW, Packham G. Mcl-1. Int J Biochem Cell Biol 2005; 37:267–271.

    CAS  PubMed  Google Scholar 

  97. Michels J, O’Neill JW, Dallman CL et al. Mcl-1 is required for akata6 b-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene 2004; 23:4818–4827.

    CAS  PubMed  Google Scholar 

  98. Li H, Zhu H, Xu CJ et al. Cleavage of bid by caspase 8 mediates the mitochondrial damage in the fas pathway of apoptosis. Cell 1998; 94:491–501.

    CAS  PubMed  Google Scholar 

  99. Gil-Parrado S, Fernandez-Montalvan A, Assfalg-Machleidt I et al. Ionomycin-activated calpain triggers apoptosis. A probable role for bcl-2 family members. J Biol Chem 2002; 277:27217–27226.

    CAS  PubMed  Google Scholar 

  100. Qi B, Hardwick JM. BCL-2 turns deadly. Nat Chem Biol 2008; 4:722–723.

    CAS  PubMed  Google Scholar 

  101. Kolluri SK, Zhu X, Zhou X et al. A short nur77-derived peptide converts bcl-2 from a protector to a killer. Cancer Cell 2008; 14:285–298.

    CAS  PubMed  Google Scholar 

  102. Lin B, Kolluri SK, Lin F et al. Conversion of bcl-2 from protector to killer by interaction with nuclear orphan receptor nur77/tr3. Cell 2004; 116:527–540.

    CAS  PubMed  Google Scholar 

  103. Luciano F, Krajewska M, Ortiz-Rubio P et al. Nur77 converts phenotype of bcl-b, an antiapoptotic protein expressed in plasma cells and myeloma. Blood 2007; 109:3849–3855.

    CAS  PubMed  Google Scholar 

  104. Thompson J, Winoto A. During negative selection, nur77 family proteins translocate to mitochondria where they associate with bcl-2 and expose its proapoptotic bh3 domain. J Exp Med 2008; 205:1029–1036.

    CAS  PubMed  Google Scholar 

  105. Hickman JA, Hardwick JM, Kaczmarek LK et al. Bcl-xl inhibitor abt-737 reveals a dual role for bcl-xl in synaptic transmission. J Neurophysiol 2008; 99:1515–1522.

    CAS  PubMed  Google Scholar 

  106. Ubol S, Tucker PC, Griffin DE et al. Neurovirulent strains of alphavirus induce apoptosis in bcl-2-expressing cells: Role of a single amino acid change in the e2 glycoprotein. Proc Natl Acad Sci USA 1994; 91:5202–5206.

    CAS  PubMed  Google Scholar 

  107. Levine B, Hardwick JM, Griffin DE. Persistence of alphaviruses in vertebrate hosts. Trends Microbiol 1994; 2:25–28.

    CAS  PubMed  Google Scholar 

  108. Griffin DE, Hardwick JM. Perspective: Virus infections and the death of neurons. Trends Microbiol 1999; 7:155–160.

    CAS  PubMed  Google Scholar 

  109. Griffin DE, Levine B, Ubol S et al. The effects of alphavirus infection on neurons. Ann Neurol 1994; 35 Suppl:S23–27.

    Google Scholar 

  110. Hardwick JM, Levine B. Sindbis virus vector system for functional analysis of apoptosis regulators. Methods Enzymol 2000; 322:492–508.

    CAS  PubMed  Google Scholar 

  111. Fannjiang Y, Kim CH, Huganir RL et al. Bak alters neuronal excitability and can switch from anti-to pro-death function during postnatal development. Dev Cell 2003; 4:575–585.

    CAS  PubMed  Google Scholar 

  112. Middleton G, Davies AM. Populations of ngf-dependent neurones differ in their requirement for bax to undergo apoptosis in the absence of ngf/trka signalling in vivo. Development 2001; 128:4715–4728.

    CAS  PubMed  Google Scholar 

  113. Middleton G, Nunez G, Davies AM. Bax promotes neuronal survival and antagonises the survival effects of neurotrophic factors. Development 1996; 122:695–701.

    CAS  PubMed  Google Scholar 

  114. Senoo-Matsuda N, Igaki T, Miura M. Bax-like protein drob-1 protects neurons from expanded polyglutamine-induced toxicity in drosophila. EMBO J 2005; 24:2700–2713.

    CAS  PubMed  Google Scholar 

  115. Chew SK, Chen P, Link N et al. Genome-wide silencing in drosophila captures conserved apoptotic effectors. Nature 2009.

    Google Scholar 

  116. Sevrioukov EA, Burr J, Huang EW et al. Drosophila bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 2007; 45:184–193.

    CAS  PubMed  Google Scholar 

  117. Morrison RS, Wenzel HJ, Kinoshita Y et al. Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci 1996; 16:1337–1345.

    CAS  PubMed  Google Scholar 

  118. Holcik M, Thompson CS, Yaraghi Z et al. The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (naip1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc Natl Acad Sci USA 2000; 97:2286–2290.

    CAS  PubMed  Google Scholar 

  119. Jonas EA, Hoit D, Hickman JA et al. Modulation of synaptic transmission by the bcl-2 family protein bcl-xl. J Neurosci 2003; 23:8423–8431.

    CAS  PubMed  Google Scholar 

  120. Jonas EA, Hickman JA, Chachar M et al. Proapoptotic n-truncated bcl-xl protein activates endogenous mitochondrial channels in living synaptic terminals. Proc Natl Acad Sci USA 2004; 101:13590–13595.

    CAS  PubMed  Google Scholar 

  121. Karbowski M, Norris KL, Cleland MM et al. Role of bax and bak in mitochondrial morphogenesis. Nature 2006; 443:658–662.

    CAS  PubMed  Google Scholar 

  122. Jonas EA, Hickman JA, Hardwick JM et al. Exposure to hypoxia rapidly induces mitochondrial channel activity within a living synapse. J Biol Chem 2005; 280:4491–4497.

    CAS  PubMed  Google Scholar 

  123. Jonas EA, Hardwick JM, Kaczmarek LK. Actions of bax on mitochondrial channel activity and on synaptic transmission. Antioxid Redox Signal 2005; 7:1092–1100.

    CAS  PubMed  Google Scholar 

  124. Vander Heiden MG, Thompson CB. BCL-2 proteins: Regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999; 1:E209–216.

    Google Scholar 

  125. Vander Heiden MG, Li XX, Gottleib E et al. Bcl-xl promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 2001; 276:19414–19419.

    Google Scholar 

  126. Vander Heiden MG, Chandel NS, Williamson EK et al. Bcl-xl regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997; 91:627–637.

    Google Scholar 

  127. Frank S. Dysregulation of mitochondrial fusion and fission: An emerging concept in neurodegeneration. Acta Neuropathol 2006; 111:93–100.

    PubMed  Google Scholar 

  128. Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007; 8:870–879.

    CAS  PubMed  Google Scholar 

  129. Knott AB, Perkins G, Schwarzenbacher R et al. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 2008; 9:505–518.

    CAS  PubMed  Google Scholar 

  130. Jagasia R, Grote P, Westermann B et al. Drp-1-mediated mitochondrial fragmentation during egl-1-induced cell death in c. Elegans. Nature 2005; 433:754–760.

    CAS  PubMed  Google Scholar 

  131. Li H, Chen Y, Jones AF et al. Bcl-xl induces drp1-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 2008; 105:2169–2174.

    CAS  PubMed  Google Scholar 

  132. Tan FJ, Husain M, Manlandro CM et al. Ced-9 and mitochondrial homeostasis in c. Elegans muscle. J Cell Sci 2008; 121:3373–3382.

    CAS  PubMed  Google Scholar 

  133. Parone PA, James DI, Da Cruz S et al. Inhibiting the mitochondrial fission machinery does not prevent bax/bak-dependent apoptosis. Mol Cell Biol 2006; 26:7397–7408.

    CAS  PubMed  Google Scholar 

  134. Breckenridge DG, Kang BH, Xue D. BCL-2 proteins egl-1 and ced-9 do not regulate mitochondrial fission or fusion in caenorhabditis elegans. Curr Biol 2009.

    Google Scholar 

  135. Berman SB, Pineda FJ, Hardwick JM. Mitochondrial fission and fusion dynamics: The long and short of it. Cell Death Differ 2008; 15:1147–1152.

    CAS  PubMed  Google Scholar 

  136. Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 2003; 10:870–880.

    CAS  PubMed  Google Scholar 

  137. Sheridan C, Delivani P, Cullen SP et al. Bax-or bak-induced mitochondrial fission can be uncoupled from cytochrome c release. Mol Cell 2008; 31:570–585.

    CAS  PubMed  Google Scholar 

  138. Twig G, Elorza A, Molina AJ et al. Fission and selective fusion govern segregation and elimination by autophagy. EMBO J 2008; 27:433–446.

    CAS  PubMed  Google Scholar 

  139. Kowaltowski AJ, Cosso RG, Campos CB et al. Effect of bcl-2 overexpression on mitochondrial structure and function. J Biol Chem 2002; 277:42802–42807.

    CAS  PubMed  Google Scholar 

  140. Maiuri MC, Criollo A, Tasdemir E et al. Bh3-only proteins and bh3 mimetics induce autophagy by competitively disrupting the interaction between beclin 1 and bcl-2/bcl-x(l). Autophagy 2007; 3:374–376.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marie Hardwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lamb, H.M., Hardwick, J.M. (2010). Noncanonical Functions of BCL-2 Proteins in the Nervous System. In: Hetz, C. (eds) BCL-2 Protein Family. Advances in Experimental Medicine and Biology, vol 687. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6706-0_7

Download citation

Publish with us

Policies and ethics