Endoplasmic Reticulum Stress and BCL-2 Family Members

  • Ross T. Weston
  • Hamsa Puthalakath
Part of the Advances in Experimental Medicine and Biology book series (volume 687)


In the eukaryotic cell, the endoplasmic reticulum (ER) plays an important role as the site of lipid synthesis, protein folding and protein maturation. Stringent regulation of redox and calcium homeostasis is paramount, failure of which leads accumulation of unfolded and aggregating proteins resulting in a condition known as ER stress. Eukaryotic cells deal with ER stress by eliciting the unfolded protein response (UPR). This pathway splits into two streams depending on the severity and longevity of the ER stress, where the cell must make a choice for the good of the organism between survival and programmed cell death. The BCL-2 family of proteins is central to the cell death arm of the UPR pathway. This chapter discusses the recent findings on the involvement of BCL-2 family members in the apoptotic process initiated by ER stress and a related process called autophagy. Understanding the molecular mechanisms involved in ER stress and autophagy could have a profound implications developing new therapies for many ER stress associated diseases and cancer.


Endoplasmic Reticulum Endoplasmic Reticulum Stress Idiopathic Pulmonary Fibrosis Unfold Protein Response Cell Death Differ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gupta RS. Life’s Third Domain (Archaea): An established fact or an endangered paradigm? A new proposal for classification of organisms based on protein sequences and cell structure. Theoretical Population Biology 1998; 54(2):91–104.CrossRefPubMedGoogle Scholar
  2. 2.
    Gray MW BG, Lang BF. Mitochondrial evolution. Science 1999; 283(5407):1476–1481.CrossRefPubMedGoogle Scholar
  3. 3.
    Andersson SG KC. Reductive evolution of resident genomes. Trends Microbiol 1998; 6(7):263–268.CrossRefPubMedGoogle Scholar
  4. 4.
    de Brito OM SL. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 2008; 456(7222):605–610.CrossRefPubMedGoogle Scholar
  5. 5.
    Kanwar YS SL. Shuttling of calcium between endoplasmic reticulum and mitochondria in the renal vasculature. Am J Physiol Renal Physiol 2008; 295(5):F101–F102.CrossRefGoogle Scholar
  6. 6.
    Canté-Barrett K, Gallo EM, Winslow MM et al. Thymocyte negative selection is mediated by protein kinase C-and Ca2+-dependent transcriptional induction of bim. J Immunol 2006; 176(4):2299–2306.PubMedGoogle Scholar
  7. 7.
    Gaut JR HL. The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 1993; 5(4):589–595.CrossRefPubMedGoogle Scholar
  8. 8.
    Xu W LL, Charles IG, Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 2004; 6(11):1129–1134.CrossRefPubMedGoogle Scholar
  9. 9.
    Csordás G RC, Várnai P, Walter L et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 2006; 174(7):915–921.CrossRefPubMedGoogle Scholar
  10. 10.
    Kaufmann RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002; 110:1389–1398.Google Scholar
  11. 11.
    Molinari M HA. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 2000; 288(5464):331–333.CrossRefPubMedGoogle Scholar
  12. 12.
    Schröder M KR. The mammalian unfolded protein response. Annu Rev Biochem 2005; 74:739–789.CrossRefPubMedGoogle Scholar
  13. 13.
    Di Sano F FE, Tufi R, Achsel T et al. Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 2006; 281(5):2693–2700.CrossRefPubMedGoogle Scholar
  14. 14.
    Rutishauser J SM. Endoplasmic reticulum storage diseases. Swiss Med Wkly 2002; 132(17-18):211–222.PubMedGoogle Scholar
  15. 15.
    Cheng SH GR, Marshall J, Paul S et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990; 63(4):827–834.CrossRefPubMedGoogle Scholar
  16. 16.
    Le A SJ, Ferrell GA, Shaker JC et al. Association between calnexin and a secretion-incompetent variant of human alpha 1-antitrypsin. J Biol Chem 1994; 269(10):7514–7519.PubMedGoogle Scholar
  17. 17.
    Kim PS KO, Arvan P. An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism. J Cell Biol 1996; 133(3):517–527.CrossRefPubMedGoogle Scholar
  18. 18.
    Mulders SM BD, Rijss JP, Kamsteeg EJ et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 1998; 102(1):57–66.CrossRefPubMedGoogle Scholar
  19. 19.
    Allison J ML, Culvenor J, Bartholomeusz RK et al. Overexpression of beta 2-microglobulin in transgenic mouse islet beta cells results in defective insulin secretion. Proc Natl Acad Sci USA 1991; 88(6):2070–2074.CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshioka M, Kayo T, Ikeda T et al. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 1997; 46(5):887–894.CrossRefPubMedGoogle Scholar
  21. 21.
    Hetz C, Thielen P, Fisher J et al. The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis. Cell Death Differ 2007; 14(7):1386–1389.CrossRefPubMedGoogle Scholar
  22. 22.
    de Almeida SF, M. dS. The unfolded protein response in hereditary haemochromatosis. J Cell Mol Med 2007; 12(2):421–434.CrossRefPubMedGoogle Scholar
  23. 23.
    Korfei M RC, Mahavadi P, Henneke I et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2008; 178(8):838–846.CrossRefPubMedGoogle Scholar
  24. 24.
    Yamamoto A MN, Schindler CK, So NK et al. Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. J Neuropathol Exp Neurol 2006; 65(3):217–225.PubMedGoogle Scholar
  25. 25.
    Brunsing R OS, Weber F, Bicknell A et al. B-and T-cell development both involve activity of the unfolded protein response pathway. J Biol Chem 2008; 283(26):17954–17961.CrossRefPubMedGoogle Scholar
  26. 26.
    Huse M QE, Davis MM. Shouts, whispers and the kiss of death: directional secretion in T-cells. Nat Immunol 2008; 9(10):1105–1111.CrossRefPubMedGoogle Scholar
  27. 27.
    Nakanishi K DN, Morishima N. Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB J 2007; 21(11):2994–3003.CrossRefPubMedGoogle Scholar
  28. 28.
    Iwakoshi NN PM, Glimcher LH. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 2007; 204(10):2267–2275.CrossRefPubMedGoogle Scholar
  29. 29.
    Zinszner H KM, Wang X, Batchvarova N et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998; 12(7):982–995.CrossRefPubMedGoogle Scholar
  30. 30.
    Nakagawa T ZH, Morishima N, Li E et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403(6765):98–103.CrossRefPubMedGoogle Scholar
  31. 31.
    Morishima N NK, Takenouchi H, Shibata T et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 2002; 277(37):34287–34294.CrossRefPubMedGoogle Scholar
  32. 32.
    Hitomi J KT, Eguchi Y, Kudo T et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 2004; 165(3):347–356.CrossRefPubMedGoogle Scholar
  33. 33.
    Saleh M MJ, Wolinski MK, Bensinger SJ et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 2006; 440(7078):1064–1068.CrossRefPubMedGoogle Scholar
  34. 34.
    Saleh M VJ, Graham RK, Huyck M et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 2004; 429(6987):75–79.CrossRefPubMedGoogle Scholar
  35. 35.
    Roy S SJ, Houde C, Loisel TP et al. Confinement of caspase-12 proteolytic activity to autoprocessing. Proc Natl Acad Sci USA 2008; 105(11):4133–4138.CrossRefPubMedGoogle Scholar
  36. 36.
    Krajewski S TS, Takayama S, Schibler MJ et al. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum and outer mitochondrial membranes. Cancer Res 1993; 53(19):4701–4714.PubMedGoogle Scholar
  37. 37.
    Thomenius MJ DC. BCL-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J Cell Sci 2003; 116:4493–4499.CrossRefPubMedGoogle Scholar
  38. 38.
    Chen L WS, Wei A, Smith BJ et al. Differential targeting of prosurvival BCL-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005; 17(3):393–403.CrossRefPubMedGoogle Scholar
  39. 39.
    Willis SN CL, Dewson G, Wei A et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not BCL-2, until displaced by BH3-only proteins. Genes Dev 2005; 19(11):1294–1305.CrossRefPubMedGoogle Scholar
  40. 40.
    Boya P, Cohen I, Zamzami N et al. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ 2002; 9(4):465–467.CrossRefPubMedGoogle Scholar
  41. 41.
    Zong WX LT, Ross AJ, MacGregor GR et al. BH3-only proteins that bind pro-survival BCL-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001; 15(12):1481–1486.CrossRefPubMedGoogle Scholar
  42. 42.
    Zong WX LC, Hatzivassiliou G, Lindsten T et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 2003; 162(1):59–69.CrossRefPubMedGoogle Scholar
  43. 43.
    Scorrano L OS, Opferman JT, Cheng EH et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003; 300(5616):135–139.CrossRefPubMedGoogle Scholar
  44. 44.
    Oakes SA SL, Opferman JT, Bassik MC et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 2004; 102(1):105–110.CrossRefPubMedGoogle Scholar
  45. 45.
    Hetz C BP, Fisher J, Lee AH et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 2006; 312(5773):572–576.CrossRefPubMedGoogle Scholar
  46. 46.
    Puthalakath H ORL, Gunn P, Lee L et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 2007; 129(7):1337–1349.CrossRefPubMedGoogle Scholar
  47. 47.
    Reimertz C, Kogel D, Rami A et al. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 2003; 162(4):587–97.CrossRefPubMedGoogle Scholar
  48. 48.
    Nickson P TA, Erhardt P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc Res 2007; 73(1):48–56.CrossRefPubMedGoogle Scholar
  49. 49.
    Jiang CC LK, Avery-Kiejda KA, Wade M et al. Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Res 2008; 68(16):6708–6717.CrossRefPubMedGoogle Scholar
  50. 50.
    Li J LB, Lee AS. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 2006; 281(11):7260–7270.CrossRefPubMedGoogle Scholar
  51. 51.
    Kieran D, Woods I, Villunger A et al. Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc Natl Acad Sci USA 2007; 104(51):20606–20611.CrossRefPubMedGoogle Scholar
  52. 52.
    Szegezdi E HK, Kavanagh ET, Samali A et al. Nerve growth factor blocks thapsigargin-induced apoptosis at the level of the mitochondrion via regulation of Bim. J Cell Mol Med 2008. (Epub ahead of print).Google Scholar
  53. 53.
    Armstrong JL VG, Redfern CP, Lovat PE. Role of Noxa in p53-independent fenretinide-induced apoptosis of neuroectodermal tumours. Apoptosis 2007; 12(3):613–622.CrossRefPubMedGoogle Scholar
  54. 54.
    Bonzon C B-HL, Pagliari LJ, Green DR et al. Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. Mol Biol Cell 2006; 17(5):2150–2157.CrossRefPubMedGoogle Scholar
  55. 55.
    Jie H DH, Xingkui X, Liang G et al. Homoharringtonine-induced apoptosis of MDS cell line MUTZ-1 cells is mediated by the endoplasmic reticulum stress pathway. Leuk Lymphoma 2007; 48(5):964–977.CrossRefPubMedGoogle Scholar
  56. 56.
    Köhler B AS, Concannon CG, Rehm M et al. Bid participates in genotoxic drug-induced apoptosis of HeLa cells and is essential for death receptor ligands’ apoptotic and synergistic effects. PLoS ONE 2008; 3(7):e2844.CrossRefPubMedGoogle Scholar
  57. 57.
    Ozcan U CQ, Yilmaz E, Lee AH et al. Endoplasmic reticulum stress links obesity, insulin action and type 2 diabetes. Science 2004; 306(5696):457–461.CrossRefPubMedGoogle Scholar
  58. 58.
    Jin HO PI, An S, Lee HC et al. Up-regulation of Bak and Bim via JNK downstream pathway in the response to nitric oxide in human glioblastoma cells. J Cell Physiol 2006; 206(2):477–486.CrossRefPubMedGoogle Scholar
  59. 59.
    Tsuruta F, JS, Mori Y et al. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 2004; 23:1889–1899.CrossRefPubMedGoogle Scholar
  60. 60.
    Lei K DR. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 2003; 100(5):2432–2437.CrossRefPubMedGoogle Scholar
  61. 61.
    Resende R FE, Pereira C, Oliveira CR. ER stress is involved in Abeta-induced GSK-3beta activation and tau phosphorylation. J Neurosci Res 2008; 86(9):2091–2099.CrossRefPubMedGoogle Scholar
  62. 62.
    Song L DSP, Jope RS. Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 2002; 277(47):44701–44708.CrossRefPubMedGoogle Scholar
  63. 63.
    Opferman J. Unraveling MCL-1 degradation. Cell Death Differ 2006; 13(8):1260–1262.CrossRefPubMedGoogle Scholar
  64. 64.
    Linseman DA BB, Precht TA, Phelps RA et al. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 2004; 24(44):9993–10002.CrossRefPubMedGoogle Scholar
  65. 65.
    Mizushima N. Autophagy: process and function. Genes Dev 2007; 21(22):2861–2873.CrossRefPubMedGoogle Scholar
  66. 66.
    Mizushima N. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 2005; 2:1535–1541.CrossRefGoogle Scholar
  67. 67.
    Yue Z JS, Yang C, Levine AJ et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 2003; 100(25):15077–15082.CrossRefPubMedGoogle Scholar
  68. 68.
    Liang XH KL, Jiang HH, Gordon G et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel BCL-2-interacting protein. J Virol 1998; 72(11):8586–8596.PubMedGoogle Scholar
  69. 69.
    Pattingre S TA, Qu X, Garuti R et al. BCL-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122(6):927–939.CrossRefPubMedGoogle Scholar
  70. 70.
    Amaravadi RK YD, Lum JJ, Bui T et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007; 117(2):326–336.CrossRefPubMedGoogle Scholar
  71. 71.
    Longo L PF, Scardino A, Alabiso O et al. Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma. Mol Cancer Ther 2008;7(8):2476–2485.CrossRefPubMedGoogle Scholar
  72. 72.
    Kim KW MR, Cao C, Albert JM et al. Autophag y for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem 2006; 281(48):36883–36890.CrossRefPubMedGoogle Scholar
  73. 73.
    Shimizu S KT, Mizushima N, Mizuta T et al. Role of BCL-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004; 6(12):1221–1228.CrossRefPubMedGoogle Scholar
  74. 74.
    Yorimitsu T NU, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem 2006.Google Scholar
  75. 75.
    Dahms NM LP, Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 1989; 262(21):12115–12118.Google Scholar
  76. 76.
    Momoi T. Conformational diseases and ER stress-mediated cell death: apoptotic cell death and autophagic cell death. Curr Mol Med 2006; 6(1):111–118.CrossRefPubMedGoogle Scholar
  77. 77.
    Ogata M HS, Saito A, Morikawa K et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26(24):9220–9231.CrossRefPubMedGoogle Scholar
  78. 78.
    Høyer-Hansen M BL, Szyniarowski P, Campanella M et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta and BCL-2. Mol Cell 2007; 25(2):193–205.CrossRefPubMedGoogle Scholar
  79. 79.
    Kouroku Y FE, Tanida I, Ueno T et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2007; 14(2):230–239.CrossRefPubMedGoogle Scholar
  80. 80.
    Fujita E KY, Isoai A, Kumagai H et al. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/ lysosome ERAD(II). Hum Mol Genet 2007; 16(6):618–629.CrossRefPubMedGoogle Scholar
  81. 81.
    Demarchi F BC, Copetti T, Tanida I et al. Calpain is required for macroautophagy in mammalian cells. J Cell Biol 2006; 175(4):595–605.CrossRefPubMedGoogle Scholar
  82. 82.
    Inbal B BS, Sabanay I, Shani G et al. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 2002; 157(3):455–468.CrossRefPubMedGoogle Scholar
  83. 83.
    Bernales S MK, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 2006; 4(12):e423.CrossRefPubMedGoogle Scholar
  84. 84.
    Altman BJ WJ, Zhao Y, Coloff JL et al. Autophagy provides nutrients but can lead to chop-dependent induction of bim to sensitize growth factor deprived cells to apoptosis. Mol Biol Cell 2008. (Epub ahead of print).Google Scholar
  85. 85.
    Coon MJ. Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 2005; 45:1–25.CrossRefPubMedGoogle Scholar
  86. 86.
    Ozcan U YE, Ozcan L, Furuhashi M et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313(579):1137–1140.CrossRefPubMedGoogle Scholar
  87. 87.
    Strasser A Puthalakath H. Fold up or perish: unfolded protein response and chemotherapy. Cell Death Differ 2008; 15(2):223–225.CrossRefPubMedGoogle Scholar
  88. 88.
    Paoluzzi L GM, Bhagat G, Furman RR et al. The BH3-only mimetic ABT-737 synergizes the antineoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood 2008; 12(7):2906–2916.CrossRefGoogle Scholar
  89. 89.
    J. Adams MK. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 2004; 22:304–311.CrossRefGoogle Scholar
  90. 90.
    Tsutsumi S GT, Tomisato W, Mima S et al. Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ 2004; 11(9):1009–1016.CrossRefPubMedGoogle Scholar
  91. 91.
    Hideshima T BJ, Wong J, Chauhan D et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005; 102(24):8567–8572.CrossRefPubMedGoogle Scholar
  92. 92.
    Maclean KH, Dorsey FC, JL L et al. Targeting lysosomal degradation induces p53-dependent cell deah and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 2008; 118(1):79–88.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Biochemistry, School of Molecular SciencesLa Trobe UniversityBundooraAustralia

Personalised recommendations