Epigenetic Alterations as Contributors to the Pathogenesis, Detection, Prognosis and Treatment of Human Pre-invasive Neoplasia



The study of molecular processes driving human neoplasia development is achieving critical gains in terms of better detection and treatment. Current medicine already benefits from discovering genetic signatures of distinct cancers, and therapies have become more specifically targeted to the molecular aberrations defining parti­cular cancers (e.g.: chronic myelogenous leukemia is now diagnosed by detecting the t(9;22)(q34;q11) translocation, and therapy is based on inhibitors of the aberrant bcr-abl kinase). Epigenetic processes complement the genetic determinants of the cellular phenotype, and their study is of great interest for cancer researchers. The primary physiologic role of epigenetics is to govern cellular differentiation. Epigenetics have particular importance in organogenesis and also in maintaining the proper phenotypic profile of each cell in distinct organs and systems. The vast majority of current studies address DNA methylation changes pertinent to different tumor types. The global hypomethylation occurring in cancer results in genetic instability and may trigger enhanced expression of particular oncogenes. In contrast, aberrant promoter hypermethylation may reduce the expression of proteins that are critical for tissue homeostasis. This mechanism may reduce the expression of important tumor suppressor genes or the level of proteins critically involved in DNA maintenance and repair, cellular adhesion and intracellular signaling. Apart from methylation, neoplasia related perturbations were identified in virtually all of the epigenetic machinery. Proteins controlling DNA conformation (such as histone– modifying enzymes, or components of ATP-dependent remodeling and poly-ADP ribosylation) show reduced expression or activity in several distinct tumor types, providing evidence that epigenetics are critically involved in cancer development. The dynamic profile of epigenetic changes provides valuable background for clinical applications. Based on the particular epigenetic signatures described for different tumors, current studies focus on the development of epigenetic tests not only to diagnose cancer in early stages including pre-invasive disease, but also to identify patients at risk for tumor development. In addition, neoplasia-related epigenetic changes open a new therapeutic approach in human cancers, with drugs that undergo or have already passed clinical trials. Epigenetics are therefore emerging as a promising field for both diagnostic and therapeutic approaches of human neoplasia and pre-invasive disease.


Adenomatous Polyposis Coli Histone Acetylation Promoter Hypermethylation Preneoplastic Lesion Human Neoplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lafon-Hughes L, Di Tomaso MV, Mendez-Acuna L, Martinez-Lopez W (2008) Chromatin-remodelling mechanisms in cancer. Mutat Res 658:191–214PubMedCrossRefGoogle Scholar
  2. 2.
    Keppler BR, Archer TK (2008) Chromatin-modifying enzymes as therapeutic targets – Part 2. Expert Opin Ther Targets 12:1457–1467PubMedCrossRefGoogle Scholar
  3. 3.
    Yamamichi N, Inada K, Ichinose M, Yamamichi-Nishina M, Mizutani T, Watanabe H, Shiogama K, Fujishiro M, Okazaki T, Yahagi N, Haraguchi T, Fujita S, Tsutsumi Y, Omata M, Iba H (2007) Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res 67:10727–10735PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng YY, Yu J, Wong YP, Man EP, To KF, Jin VX, Li J, Tao Q, Sung JJ, Chan FK, Leung WK (2007) Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer. Br J Cancer 97:895–901PubMedGoogle Scholar
  5. 5.
    Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE (2003) Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 63:560–566PubMedGoogle Scholar
  6. 6.
    Grand F, Kulkarni S, Chase A, Goldman JM, Gordon M, Cross NC (1999) Frequent deletion of hSNF5/INI1, a component of the SWI/SNF complex, in chronic myeloid leukemia. Cancer Res 59:3870–3874PubMedGoogle Scholar
  7. 7.
    Yuge M, Nagai H, Uchida T, Murate T, Hayashi Y, Hotta T, Saito H, Kinoshita T (2000) HSNF5/INI1 gene mutations in lymphoid malignancy. Cancer Genet Cytogenet 122:37–42PubMedCrossRefGoogle Scholar
  8. 8.
    Specchia G, Albano F, Anelli L, Storlazzi CT, Zagaria A, Liso A, Pannunzio A, Pastore D, Mestice A, Greco G, Liso V, Rocchi M (2004) Derivative chromosome 9 deletions in chronic myeloid leukemia are associated with loss of tumor suppressor genes. Leuk Lymphoma 45:689–694PubMedCrossRefGoogle Scholar
  9. 9.
    DeCristofaro MF, Betz BL, Wang W, Weissman BE (1999) Alteration of hSNF5/INI1/BAF47 detected in rhabdoid cell lines and primary rhabdomyosarcomas but not Wilms’ tumors. Oncogene 18:7559–7565PubMedCrossRefGoogle Scholar
  10. 10.
    Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206PubMedCrossRefGoogle Scholar
  11. 11.
    Biegel JA, Tan L, Zhang F, Wainwright L, Russo P, Rorke LB (2002) Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin Cancer Res 8:3461–3467PubMedGoogle Scholar
  12. 12.
    Mohamed MA, Greif PA, Diamond J, Sharaf O, Maxwell P, Montironi R, Young RA, Hamilton PW (2007) Epigenetic events, remodelling enzymes and their relationship to chromatin organization in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. BJU Int 99:908–915PubMedCrossRefGoogle Scholar
  13. 13.
    Marfella CG, Imbalzano AN (2007) The Chd family of chromatin remodelers. Mutat Res 618:30–40PubMedCrossRefGoogle Scholar
  14. 14.
    Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, Venkatachalam S (2009) Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene 28:1053–1062PubMedCrossRefGoogle Scholar
  15. 15.
    Kumar R, Wang RA, Bagheri-Yarmand R (2003) Emerging roles of MTA family members in human cancers. Semin Oncol 30:30–37PubMedCrossRefGoogle Scholar
  16. 16.
    Thompson PM, Gotoh T, Kok M, White PS, Brodeur GM (2003) CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 22:1002–1011PubMedCrossRefGoogle Scholar
  17. 17.
    Fujita T, Igarashi J, Okawa ER, Gotoh T, Manne J, Kolla V, Kim J, Zhao H, Pawel BR, London WB, Maris JM, White PS, Brodeur GM (2008) CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst 100:940–949PubMedCrossRefGoogle Scholar
  18. 18.
    Mulero-Navarro S, Esteller M (2008) Chromatin remodeling factor CHD5 is silenced by promoter CpG island hypermethylation in human cancer. Epigenetics 3:210–215PubMedCrossRefGoogle Scholar
  19. 19.
    Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420PubMedCrossRefGoogle Scholar
  20. 20.
    Spannhoff A, Hauser AT, Heinke R, Sippl W, Jung M (2009) The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem 4:1568–1582PubMedCrossRefGoogle Scholar
  21. 21.
    Goldsmith ME, Kitazono M, Fok P, Aikou T, Bates S, Fojo T (2003) The histone deacetylase inhibitor FK228 preferentially enhances adenovirus transgene expression in malignant cells. Clin Cancer Res 9:5394–5401PubMedGoogle Scholar
  22. 22.
    Banwell CM, Singh R, Stewart PM, Uskokovic MR, Campbell MJ (2003) Antiproliferative signalling by 1, 25(OH)2D3 in prostate and breast cancer is suppressed by a mechanism involving histone deacetylation. Recent Results Cancer Res 164:83–98PubMedCrossRefGoogle Scholar
  23. 23.
    Lund AH, van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 18:2315–2335PubMedCrossRefGoogle Scholar
  24. 24.
    Mahlknecht U, Hoelzer D (2000) Histone acetylation modifiers in the pathogenesis of malignant disease. Mol Med 6:623–644PubMedGoogle Scholar
  25. 25.
    Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12:1565–1569PubMedGoogle Scholar
  26. 26.
    Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY, Lee SH, Park WS, Yoo NJ, Lee JY, Nam SW (2005) Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113:264–268PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y, Mita K, Hamaguchi M, Hayashi S, Iwase H (2004) HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 10:6962–6968PubMedCrossRefGoogle Scholar
  28. 28.
    Osawa T, Chong JM, Sudo M, Sakuma K, Uozaki H, Shibahara J, Nagai H, Funata N, Fukayama M (2002) Reduced expression and promoter methylation of p16 gene in Epstein-Barr virus-associated gastric carcinoma. Jpn J Cancer Res 93:1195–1200PubMedCrossRefGoogle Scholar
  29. 29.
    Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Lazar MA, Minucci S, Pelicci PG (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391:815–818PubMedCrossRefGoogle Scholar
  30. 30.
    Jones LK, Saha V (2002) Chromatin modification, leukaemia and implications for therapy. Br J Haematol 118:714–727PubMedCrossRefGoogle Scholar
  31. 31.
    Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A, Nagy TR (2007) SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67:6612–6618PubMedCrossRefGoogle Scholar
  32. 32.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedCrossRefGoogle Scholar
  33. 33.
    de Nigris F, Cerutti J, Morelli C, Califano D, Chiariotti L, Viglietto G, Santelli G, Fusco A (2002) Isolation of a SIR-like gene, SIR-T8, that is overexpressed in thyroid carcinoma cell lines and tissues. Br J Cancer 86:917–923PubMedCrossRefGoogle Scholar
  34. 34.
    Frye R (2002) “SIRT8” expressed in thyroid cancer is actually SIRT7. Br J Cancer 87:1479PubMedCrossRefGoogle Scholar
  35. 35.
    Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849PubMedCrossRefGoogle Scholar
  36. 36.
    Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R, Ora I, Pajtler K, Klein-Hitpass L, Kuhfittig-Kulle S, Metzger E, Schule R, Eggert A, Buettner R, Kirfel J (2009) Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69:2065–2071PubMedCrossRefGoogle Scholar
  37. 37.
    Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L, Li R, Li Y, Zhang Y, Li Q, Yi X, Shang Y (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660–672PubMedCrossRefGoogle Scholar
  38. 38.
    Barrett A, Madsen B, Copier J, Lu PJ, Cooper L, Scibetta AG, Burchell J, Taylor-Papadimitriou J (2002) PLU-1 nuclear protein, which is upregulated in breast cancer, shows restricted expression in normal human adult tissues: a new cancer/testis antigen? Int J Cancer 101:581–588PubMedCrossRefGoogle Scholar
  39. 39.
    Xiang Y, Zhu Z, Han G, Ye X, Xu B, Peng Z, Ma Y, Yu Y, Lin H, Chen AP, Chen CD (2007) JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci U S A 104:19226–19231PubMedCrossRefGoogle Scholar
  40. 40.
    Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283PubMedCrossRefGoogle Scholar
  42. 42.
    Bird A (2007) Perceptions of epigenetics. Nature 447:396–398PubMedCrossRefGoogle Scholar
  43. 43.
    Moehrle A, Paro R (1994) Spreading the silence: epigenetic transcriptional regulation during Drosophila development. Dev Genet 15:478–484PubMedCrossRefGoogle Scholar
  44. 44.
    Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–232PubMedCrossRefGoogle Scholar
  45. 45.
    Lund AH, van Lohuizen M (2004) Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16:239–246PubMedCrossRefGoogle Scholar
  46. 46.
    Cao R, Zhang Y (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14:155–164PubMedCrossRefGoogle Scholar
  47. 47.
    Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856PubMedCrossRefGoogle Scholar
  48. 48.
    Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647:21–29PubMedCrossRefGoogle Scholar
  49. 49.
    Matsukawa Y, Semba S, Kato H, Ito A, Yanagihara K, Yokozaki H (2006) Expression of the enhancer of zeste homolog 2 is correlated with poor prognosis in human gastric cancer. Cancer Sci 97:484–491PubMedCrossRefGoogle Scholar
  50. 50.
    Yonemitsu Y, Imazeki F, Chiba T, Fukai K, Nagai Y, Miyagi S, Arai M, Aoki R, Miyazaki M, Nakatani Y, Iwama A, Yokosuka O (2009) Distinct expression of polycomb group proteins EZH2 and BMI1 in hepatocellular carcinoma. Hum Pathol 40:1304–1311PubMedCrossRefGoogle Scholar
  51. 51.
    Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, Ohta T, Nakanuma Y (2008) The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 88:873–882PubMedCrossRefGoogle Scholar
  52. 52.
    Breuer RH, Snijders PJ, Smit EF, Sutedja TG, Sewalt RG, Otte AP, van Kemenade FJ, Postmus PE, Meijer CJ, Raaphorst FM (2004) Increased expression of the EZH2 polycomb group gene in BMI-1-positive neoplastic cells during bronchial carcinogenesis. Neoplasia 6:736–743PubMedCrossRefGoogle Scholar
  53. 53.
    Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24:268–273PubMedCrossRefGoogle Scholar
  54. 54.
    McHugh JB, Fullen DR, Ma L, Kleer CG, Su LD (2007) Expression of polycomb group protein EZH2 in nevi and melanoma. J Cutan Pathol 34:597–600PubMedCrossRefGoogle Scholar
  55. 55.
    Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A, Aas T, Otte AP, Akslen LA (2006) Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res 12:1168–1174PubMedCrossRefGoogle Scholar
  56. 56.
    Ding L, Kleer CG (2006) Enhancer of Zeste 2 as a marker of preneoplastic progression in the breast. Cancer Res 66:9352–9355PubMedCrossRefGoogle Scholar
  57. 57.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629PubMedCrossRefGoogle Scholar
  58. 58.
    Rhodes DR, Sanda MG, Otte AP, Chinnaiyan AM, Rubin MA (2003) Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J Natl Cancer Inst 95:661–668PubMedCrossRefGoogle Scholar
  59. 59.
    van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA, Otte AP, Meijer CJ, Raaphorst FM (2007) Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 52:455–463PubMedCrossRefGoogle Scholar
  60. 60.
    Raman JD, Mongan NP, Tickoo SK, Boorjian SA, Scherr DS, Gudas LJ (2005) Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res 11:8570–8576PubMedCrossRefGoogle Scholar
  61. 61.
    van Kemenade FJ, Raaphorst FM, Blokzijl T, Fieret E, Hamer KM, Satijn DP, Otte AP, Meijer CJ (2001) Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 97:3896–3901PubMedCrossRefGoogle Scholar
  62. 62.
    Croonquist PA, Van Ness B (2005) The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype. Oncogene 24:6269–6280PubMedCrossRefGoogle Scholar
  63. 63.
    Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18:1592–1605PubMedCrossRefGoogle Scholar
  64. 64.
    Du J, Li Y, Li J, Zheng J. Polycomb group protein Bmi1 expression in colon cancers predicts the survival. Med Oncol 2009.Google Scholar
  65. 65.
    Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST, Dimri GP, Chen X (2009) Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis. Mol Cancer Res 7:1937–1945PubMedCrossRefGoogle Scholar
  66. 66.
    Miwa M, Masutani M (2007) PolyADP-ribosylation and cancer. Cancer Sci 98:1528–1535PubMedCrossRefGoogle Scholar
  67. 67.
    Masutani M, Nakagama H, Sugimura T (2005) Poly(ADP-ribosyl)ation in relation to cancer and autoimmune disease. Cell Mol Life Sci 62:769–783PubMedCrossRefGoogle Scholar
  68. 68.
    Klenova E, Ohlsson R (2005) Poly(ADP-ribosyl)ation and epigenetics. Is CTCF PARt of the plot? Cell Cycle 4:96–101PubMedCrossRefGoogle Scholar
  69. 69.
    Bieche I, de Murcia G, Lidereau R (1996) Poly(ADP-ribose) polymerase gene expression status and genomic instability in human breast cancer. Clin Cancer Res 2:1163–1167PubMedGoogle Scholar
  70. 70.
    Cao WH, Wang X, Frappart L, Rigal D, Wang ZQ, Shen Y, Tong WM (2007) Analysis of genetic variants of the poly(ADP-ribose) polymerase-1 gene in breast cancer in French patients. Mutat Res 632:20–28PubMedCrossRefGoogle Scholar
  71. 71.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  72. 72.
    Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988–993PubMedCrossRefGoogle Scholar
  73. 73.
    Duthie SJ, Narayanan S, Brand GM, Pirie L, Grant G (2002) Impact of folate deficiency on DNA stability. J Nutr 132:2444S–2449SPubMedGoogle Scholar
  74. 74.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedCrossRefGoogle Scholar
  75. 75.
    Kang GH, Lee HJ, Hwang KS, Lee S, Kim JH, Kim JS (2003) Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am J Pathol 163:1551–1556PubMedCrossRefGoogle Scholar
  76. 76.
    Gronbaek K, Hother C, Jones PA (2007) Epigenetic changes in cancer. Apmis 115:1039–1059PubMedCrossRefGoogle Scholar
  77. 77.
    Ballestar E, Esteller M (2008) Epigenetic gene regulation in cancer. Adv Genet 61:247–267PubMedCrossRefGoogle Scholar
  78. 78.
    Badal V, Chuang LS, Tan EH, Badal S, Villa LL, Wheeler CM, Li BF, Bernard HU (2003) CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 77:6227–6234PubMedCrossRefGoogle Scholar
  79. 79.
    Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823PubMedCrossRefGoogle Scholar
  80. 80.
    Garinis GA, Patrinos GP, Spanakis NE, Menounos PG (2002) DNA hypermethylation: when tumour suppressor genes go silent. Hum Genet 111:115–127PubMedCrossRefGoogle Scholar
  81. 81.
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686PubMedCrossRefGoogle Scholar
  82. 82.
    Toyota M, Ahuja N, Suzuki H, Itoh F, Ohe-Toyota M, Imai K, Baylin SB, Issa JP (1999) Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 59:5438–5442PubMedGoogle Scholar
  83. 83.
    Toyota M, Ho C, Ahuja N, Jair KW, Li Q, Ohe-Toyota M, Baylin SB, Issa JP (1999) Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59:2307–2312PubMedGoogle Scholar
  84. 84.
    Mueller J, Gazzoli I, Bandipalliam P, Garber JE, Syngal S, Kolodner RD (2009) Comprehensive molecular analysis of mismatch repair gene defects in suspected Lynch syndrome (hereditary nonpolyposis colorectal cancer) cases. Cancer Res 69:7053–7061PubMedCrossRefGoogle Scholar
  85. 85.
    Imai K, Yamamoto H (2008) Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 29:673–680PubMedCrossRefGoogle Scholar
  86. 86.
    Murata H, Khattar NH, Gu L, Li GM (2005) Roles of mismatch repair proteins hMSH2 and hMLH1 in the development of sporadic breast cancer. Cancer Lett 223:143–150PubMedCrossRefGoogle Scholar
  87. 87.
    Gu M, Kim D, Bae Y, Choi J, Kim S, Song S (2009) Analysis of microsatellite instability, protein expression and methylation status of hMLH1 and hMSH2 genes in gastric carcinomas. Hepatogastroenterology 56:899–904PubMedGoogle Scholar
  88. 88.
    Mao G, Yuan F, Absher K, Jennings CD, Howard DS, Jordan CT, Gu L (2008) Preferential loss of mismatch repair function in refractory and relapsed acute myeloid leukemia: potential contribution to AML progression. Cell Res 18:281–289PubMedCrossRefGoogle Scholar
  89. 89.
    Fleisher AS, Esteller M, Tamura G, Rashid A, Stine OC, Yin J, Zou TT, Abraham JM, Kong D, Nishizuka S, James SP, Wilson KT, Herman JG, Meltzer SJ (2001) Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene 20:329–335PubMedCrossRefGoogle Scholar
  90. 90.
    Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, Shi YQ, Rhyu MG, Powell SM, James SP, Wilson KT, Herman JG, Meltzer SJ (1999) Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 59:1090–1095PubMedGoogle Scholar
  91. 91.
    Sato F, Harpaz N, Shibata D, Xu Y, Yin J, Mori Y, Zou TT, Wang S, Desai K, Leytin A, Selaru FM, Abraham JM, Meltzer SJ (2002) Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res 62:1148–1151PubMedGoogle Scholar
  92. 92.
    Sarbia M, Geddert H, Klump B, Kiel S, Iskender E, Gabbert HE (2004) Hypermethylation of tumor suppressor genes (p16INK4A, p14ARF and APC) in adenocarcinomas of the upper gastrointestinal tract. Int J Cancer 111:224–228PubMedCrossRefGoogle Scholar
  93. 93.
    Bernal C, Vargas M, Ossandon F, Santibanez E, Urrutia J, Luengo V, Zavala LF, Backhouse C, Palma M, Argandona J, Aguayo F, Corvalan A (2008) DNA methylation profile in diffuse type gastric cancer: evidence for hypermethylation of the BRCA1 promoter region in early-onset gastric carcinogenesis. Biol Res 41:303–315PubMedCrossRefGoogle Scholar
  94. 94.
    Braggio E, Maiolino A, Gouveia ME, Magalhaes R, Souto Filho JT, Garnica M, Nucci M, Renault IZ. Methylation status of nine tumor suppressor genes in multiple myeloma. Int J Hematol 2009.Google Scholar
  95. 95.
    Krtolica K, Krajnovic M, Usaj-Knezevic S, Babic D, Jovanovic D, Dimitrijevic B (2007) Comethylation of p16 and MGMT genes in colorectal carcinoma: correlation with clinicopathological features and prognostic value. World J Gastroenterol 13:1187–1194PubMedGoogle Scholar
  96. 96.
    Guo XL, Sun SZ, Wang WX, Wei FC, Yu HB, Ma BL (2007) Alterations of p16INK4a tumour suppressor gene in mucoepidermoid carcinoma of the salivary glands. Int J Oral Maxillofac Surg 36:350–353PubMedCrossRefGoogle Scholar
  97. 97.
    Brucher BL, Geddert H, Langner C, Hofler H, Fink U, Siewert JR, Sarbia M (2006) Hypermethylation of hMLH1, HPP1, p14(ARF), p16(INK4A) and APC in primary adenocarcinomas of the small bowel. Int J Cancer 119:1298–1302PubMedCrossRefGoogle Scholar
  98. 98.
    Yoshino M, Suzuki M, Tian L, Moriya Y, Hoshino H, Okamoto T, Yoshida S, Shibuya K, Yoshino I (2009) Promoter hypermethylation of the p16 and Wif-1 genes as an independent prognostic marker in stage IA non-small cell lung cancers. Int J Oncol 35:1201–1209PubMedCrossRefGoogle Scholar
  99. 99.
    Murphy TM, Perry AS, Lawler M (2008) The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocr Relat Cancer 15:11–25PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang Q, Wang HY, Bhutani G, Liu X, Paessler M, Tobias JW, Baldwin D, Swaminathan K, Milone MC, Wasik MA (2009) Lack of TNFalpha expression protects anaplastic lymphoma kinase-positive T-cell lymphoma (ALK+ TCL) cells from apoptosis. Proc Natl Acad Sci U S A 106:15843–15848PubMedCrossRefGoogle Scholar
  101. 101.
    Michalowski MB, de Fraipont F, Michelland S, Entz-Werle N, Grill J, Pasquier B, Favrot MC, Plantaz D (2006) Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genet Cytogenet 166:74–81PubMedCrossRefGoogle Scholar
  102. 102.
    Elias A, Siegelin MD, Steinmuller A, von Deimling A, Lass U, Korn B, Mueller W (2009) Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas. Clin Cancer Res 15:5457–5465PubMedCrossRefGoogle Scholar
  103. 103.
    Horak P, Pils D, Haller G, Pribill I, Roessler M, Tomek S, Horvat R, Zeillinger R, Zielinski C, Krainer M (2005) Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res 3:335–343PubMedCrossRefGoogle Scholar
  104. 104.
    Martinez R, Setien F, Voelter C, Casado S, Quesada MP, Schackert G, Esteller M (2007) CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 28:1264–1268PubMedCrossRefGoogle Scholar
  105. 105.
    Hopkins-Donaldson S, Ziegler A, Kurtz S, Bigosch C, Kandioler D, Ludwig C, Zangemeister-Wittke U, Stahel R (2003) Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ 10:356–364PubMedCrossRefGoogle Scholar
  106. 106.
    Sturm I, Stephan C, Gillissen B, Siebert R, Janz M, Radetzki S, Jung K, Loening S, Dorken B, Daniel PT (2006) Loss of the tissue-specific proapoptotic BH3-only protein Nbk/Bik is a unifying feature of renal cell carcinoma. Cell Death Differ 13:619–627PubMedCrossRefGoogle Scholar
  107. 107.
    Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929PubMedCrossRefGoogle Scholar
  108. 108.
    Kanazawa T, Watanabe T, Kazama S, Tada T, Koketsu S, Nagawa H (2002) Poorly differentiated adenocarcinoma and mucinous carcinoma of the colon and rectum show higher rates of loss of heterozygosity and loss of E-cadherin expression due to methylation of promoter region. Int J Cancer 102:225–229PubMedCrossRefGoogle Scholar
  109. 109.
    Zou D, Yoon HS, Perez D, Weeks RJ, Guilford P, Humar B (2009) Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J Pathol 218:265–272PubMedCrossRefGoogle Scholar
  110. 110.
    Prasad CP, Mirza S, Sharma G, Prashad R, DattaGupta S, Rath G, Ralhan R (2008) Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/beta-catenin pathway in invasive ductal carcinoma of breast. Life Sci 83:318–325PubMedCrossRefGoogle Scholar
  111. 111.
    Rathi A, Virmani AK, Schorge JO, Elias KJ, Maruyama R, Minna JD, Mok SC, Girard L, Fishman DA, Gazdar AF (2002) Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin Cancer Res 8:3324–3331PubMedGoogle Scholar
  112. 112.
    Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199PubMedGoogle Scholar
  113. 113.
    Kwon GY, Yoo BC, Koh KC, Cho JW, Park WS, Park CK (2005) Promoter methylation of E-cadherin in hepatocellular carcinomas and dysplastic nodules. J Korean Med Sci 20:242–247PubMedCrossRefGoogle Scholar
  114. 114.
    Tamura G, Yin J, Wang S, Fleisher AS, Zou T, Abraham JM, Kong D, Smolinski KN, Wilson KT, James SP, Silverberg SG, Nishizuka S, Terashima M, Motoyama T, Meltzer SJ (2000) E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst 92:569–573PubMedCrossRefGoogle Scholar
  115. 115.
    Jin Z, Cheng Y, Olaru A, Kan T, Yang J, Paun B, Ito T, Hamilton JP, David S, Agarwal R, Selaru FM, Sato F, Abraham JM, Beer DG, Mori Y, Shimada Y, Meltzer SJ (2008) Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors. Int J Cancer 123:2331–2336PubMedCrossRefGoogle Scholar
  116. 116.
    Toyooka KO, Toyooka S, Virmani AK, Sathyanarayana UG, Euhus DM, Gilcrease M, Minna JD, Gazdar AF (2001) Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61:4556–4560PubMedGoogle Scholar
  117. 117.
    Toyooka S, Toyooka KO, Harada K, Miyajima K, Makarla P, Sathyanarayana UG, Yin J, Sato F, Shivapurkar N, Meltzer SJ, Gazdar AF (2002) Aberrant methylation of the CDH13 (H-cadherin) promoter region in colorectal cancers and adenomas. Cancer Res 62:3382–3386PubMedGoogle Scholar
  118. 118.
    Toyooka S, Toyooka KO, Maruyama R, Virmani AK, Girard L, Miyajima K, Harada K, Ariyoshi Y, Takahashi T, Sugio K, Brambilla E, Gilcrease M, Minna JD, Gazdar AF (2001) DNA methylation profiles of lung tumors. Mol Cancer Ther 1:61–67PubMedGoogle Scholar
  119. 119.
    Wang YC, Yu ZH, Liu C, Xu LZ, Yu W, Lu J, Zhu RM, Li GL, Xia XY, Wei XW, Ji HZ, Lu H, Gao Y, Gao WM, Chen LB (2008) Detection of RASSF1A promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World J Gastroenterol 14:3074–3080PubMedCrossRefGoogle Scholar
  120. 120.
    Clement G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J (2006) Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett’s oesophagus patients at risk for malignant transformation. J Pathol 208:100–107PubMedCrossRefGoogle Scholar
  121. 121.
    Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3:683–686PubMedCrossRefGoogle Scholar
  122. 122.
    Tsuchiya T, Tamura G, Sato K, Endoh Y, Sakata K, Jin Z, Motoyama T, Usuba O, Kimura W, Nishizuka S, Wilson KT, James SP, Yin J, Fleisher AS, Zou T, Silverberg SG, Kong D, Meltzer SJ (2000) Distinct methylation patterns of two APC gene promoters in normal and cancerous gastric epithelia. Oncogene 19:3642–3646PubMedCrossRefGoogle Scholar
  123. 123.
    Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Gonzalez S, Tarafa G, Sidransky D, Meltzer SJ, Baylin SB, Herman JG (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60:4366–4371PubMedGoogle Scholar
  124. 124.
    Richiardi L, Fiano V, Vizzini L, De Marco L, Delsedime L, Akre O, Tos AG, Merletti F (2009) Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol 27:3161–3168PubMedCrossRefGoogle Scholar
  125. 125.
    Brabender J, Usadel H, Danenberg KD, Metzger R, Schneider PM, Lord RV, Wickramasinghe K, Lum CE, Park J, Salonga D, Singer J, Sidransky D, Holscher AH, Meltzer SJ, Danenberg PV (2001) Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene 20:3528–3532PubMedCrossRefGoogle Scholar
  126. 126.
    Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG, Sidransky D, Huss HT, Demeester TR, Eads C, Laird PW, Ilson DH, Kelsen DP, Harpole D, Moore MB, Danenberg KD, Danenberg PV, Meltzer SJ (2000) Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 92:1805–1811PubMedCrossRefGoogle Scholar
  127. 127.
    Henrique R, Ribeiro FR, Fonseca D, Hoque MO, Carvalho AL, Costa VL, Pinto M, Oliveira J, Teixeira MR, Sidransky D, Jeronimo C (2007) High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res 13:6122–6129PubMedCrossRefGoogle Scholar
  128. 128.
    Wang JS, Guo M, Montgomery EA, Thompson RE, Cosby H, Hicks L, Wang S, Herman JG, Canto MI (2009) DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett’s esophagus. Am J Gastroenterol 104:2153–2160PubMedCrossRefGoogle Scholar
  129. 129.
    Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y, Olaru A, Wang S, Mori Y, Deacu E, Hamilton J, Kan T, Krasna MJ, Beer DG, Pepe MS, Abraham JM, Feng Z, Schmiegel W, Greenwald BD, Meltzer SJ (2005) Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene 24:4138–4148PubMedGoogle Scholar
  130. 130.
    Hamilton JP, Sato F, Jin Z, Greenwald BD, Ito T, Mori Y, Paun BC, Kan T, Cheng Y, Wang S, Yang J, Abraham JM, Meltzer SJ (2006) Reprimo methylation is a potential biomarker of Barrett’s-Associated esophageal neoplastic progression. Clin Cancer Res 12:6637–6642PubMedCrossRefGoogle Scholar
  131. 131.
    Jin Z, Mori Y, Yang J, Sato F, Ito T, Cheng Y, Paun B, Hamilton JP, Kan T, Olaru A, David S, Agarwal R, Abraham JM, Beer D, Montgomery E, Meltzer SJ (2007) Hypermethylation of the nel-like 1 gene is a common and early event and is associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene 26:6332–6340PubMedCrossRefGoogle Scholar
  132. 132.
    Jin Z, Olaru A, Yang J, Sato F, Cheng Y, Kan T, Mori Y, Mantzur C, Paun B, Hamilton JP, Ito T, Wang S, David S, Agarwal R, Beer DG, Abraham JM, Meltzer SJ (2007) Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer. Clin Cancer Res 13:6293–6300PubMedCrossRefGoogle Scholar
  133. 133.
    Jin Z, Mori Y, Hamilton JP, Olaru A, Sato F, Yang J, Ito T, Kan T, Agarwal R, Meltzer SJ (2008) Hypermethylation of the somatostatin promoter is a common, early event in human esophageal carcinogenesis. Cancer 112:43–49PubMedCrossRefGoogle Scholar
  134. 134.
    Jin Z, Hamilton JP, Yang J, Mori Y, Olaru A, Sato F, Ito T, Kan T, Cheng Y, Paun B, David S, Beer DG, Agarwal R, Abraham JM, Meltzer SJ (2008) Hypermethylation of the AKAP12 promoter is a biomarker of Barrett’s-associated esophageal neoplastic progression. Cancer Epidemiol Biomarkers Prev 17:111–117PubMedCrossRefGoogle Scholar
  135. 135.
    Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY (2009) The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer 100:1277–1286PubMedCrossRefGoogle Scholar
  136. 136.
    Zou H, Molina JR, Harrington JJ, Osborn NK, Klatt KK, Romero Y, Burgart LJ, Ahlquist DA (2005) Aberrant methylation of secreted frizzled-related protein genes in esophageal adenocarcinoma and Barrett’s esophagus. Int J Cancer 116:584–591PubMedCrossRefGoogle Scholar
  137. 137.
    Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S, Sasaki Y, Mita H, Nishikawa N, Yamaguchi K, Hirata K, Itoh F, Tokino T, Mori M, Imai K, Shinomura Y (2007) Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 26:4699–4713PubMedCrossRefGoogle Scholar
  138. 138.
    Qi J, Zhu YQ, Luo J, Tao WH (2006) Hypermethylation and expression regulation of secreted frizzled-related protein genes in colorectal tumor. World J Gastroenterol 12:7113–7117PubMedGoogle Scholar
  139. 139.
    Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P, Chughtai S, Wallis Y, Matthews GM, Morton DG (2004) The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 64:883–888PubMedCrossRefGoogle Scholar
  140. 140.
    Bu XM, Zhao CH, Zhang N, Gao F, Lin S, Dai XW (2008) Hypermethylation and aberrant expression of secreted frizzled-related protein genes in pancreatic cancer. World J Gastroenterol 14:3421–3424PubMedCrossRefGoogle Scholar
  141. 141.
    Suzuki H, Toyota M, Carraway H, Gabrielson E, Ohmura T, Fujikane T, Nishikawa N, Sogabe Y, Nojima M, Sonoda T, Mori M, Hirata K, Imai K, Shinomura Y, Baylin SB, Tokino T (2008) Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br J Cancer 98:1147–1156PubMedCrossRefGoogle Scholar
  142. 142.
    Fukui T, Kondo M, Ito G, Maeda O, Sato N, Yoshioka H, Yokoi K, Ueda Y, Shimokata K, Sekido Y (2005) Transcriptional silencing of secreted frizzled related protein 1 (SFRP 1) by promoter hypermethylation in non-small-cell lung cancer. Oncogene 24:6323–6327PubMedCrossRefGoogle Scholar
  143. 143.
    Urakami S, Shiina H, Enokida H, Hirata H, Kawamoto K, Kawakami T, Kikuno N, Tanaka Y, Majid S, Nakagawa M, Igawa M, Dahiya R (2006) Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin Cancer Res 12:6989–6997PubMedCrossRefGoogle Scholar
  144. 144.
    Veeck J, Geisler C, Noetzel E, Alkaya S, Hartmann A, Knuchel R, Dahl E (2008) Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis 29:991–998PubMedCrossRefGoogle Scholar
  145. 145.
    Lin YW, Chung MT, Lai HC, De Yan M, Shih YL, Chang CC, Yu MH (2009) Methylation analysis of SFRP genes family in cervical adenocarcinoma. J Cancer Res Clin Oncol 135:1665–1674PubMedCrossRefGoogle Scholar
  146. 146.
    Takagi H, Sasaki S, Suzuki H, Toyota M, Maruyama R, Nojima M, Yamamoto H, Omata M, Tokino T, Imai K, Shinomura Y (2008) Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J Gastroenterol 43:378–389PubMedCrossRefGoogle Scholar
  147. 147.
    Jost E, Schmid J, Wilop S, Schubert C, Suzuki H, Herman JG, Osieka R, Galm O (2008) Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemia. Br J Haematol 142:745–753PubMedCrossRefGoogle Scholar
  148. 148.
    Jost E, Gezer D, Wilop S, Suzuki H, Herman JG, Osieka R, Galm O (2009) Epigenetic dysregulation of secreted Frizzled-related proteins in multiple myeloma. Cancer Lett 281:24–31PubMedCrossRefGoogle Scholar
  149. 149.
    Liu TH, Raval A, Chen SS, Matkovic JJ, Byrd JC, Plass C (2006) CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res 66:653–658PubMedCrossRefGoogle Scholar
  150. 150.
    Pehlivan M, Sercan Z, Sercan HO (2009) sFRP1 promoter methylation is associated with persistent Philadelphia chromosome in chronic myeloid leukemia. Leuk Res 33:1062–1067PubMedCrossRefGoogle Scholar
  151. 151.
    Ding Z, Qian YB, Zhu LX, Xiong QR (2009) Promoter methylation and mRNA expression of DKK-3 and WIF-1 in hepatocellular carcinoma. World J Gastroenterol 15:2595–2601PubMedCrossRefGoogle Scholar
  152. 152.
    Taniguchi H, Yamamoto H, Hirata T, Miyamoto N, Oki M, Nosho K, Adachi Y, Endo T, Imai K, Shinomura Y (2005) Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24:7946–7952PubMedCrossRefGoogle Scholar
  153. 153.
    Mazieres J, He B, You L, Xu Z, Lee AY, Mikami I, Reguart N, Rosell R, McCormick F, Jablons DM (2004) Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 64:4717–4720PubMedCrossRefGoogle Scholar
  154. 154.
    Batra S, Shi Y, Kuchenbecker KM, He B, Reguart N, Mikami I, You L, Xu Z, Lin YC, Clement G, Jablons DM (2006) Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem Biophys Res Commun 342:1228–1232PubMedCrossRefGoogle Scholar
  155. 155.
    Yang TM, Leu SW, Li JM, Hung MS, Lin CH, Lin YC, Huang TJ, Tsai YH, Yang CT (2009) WIF-1 promoter region hypermethylation as an adjuvant diagnostic marker for non-small cell lung cancer-related malignant pleural effusions. J Cancer Res Clin Oncol 135:919–924PubMedCrossRefGoogle Scholar
  156. 156.
    Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J, Garcia JM, Munoz A, Esteller M, Gonzalez-Sancho JM (2006) Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 25:4116–4121PubMedCrossRefGoogle Scholar
  157. 157.
    van der Weyden L, Adams DJ (2007) The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta 1776:58–85PubMedGoogle Scholar
  158. 158.
    Tan SH, Ida H, Lau QC, Goh BC, Chieng WS, Loh M, Ito Y (2007) Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol Rep 18:1225–1230PubMedGoogle Scholar
  159. 159.
    Hirata T, Yamamoto H, Taniguchi H, Horiuchi S, Oki M, Adachi Y, Imai K, Shinomura Y (2007) Characterization of the immune escape phenotype of human gastric cancers with and without high-frequency microsatellite instability. J Pathol 211:516–523PubMedCrossRefGoogle Scholar
  160. 160.
    Hiraki M, Kitajima Y, Sato S, Mitsuno M, Koga Y, Nakamura J, Hashiguchi K, Noshiro H, Miyazaki K. Aberrant Gene Methylation in the Lymph Nodes Provides a Possible Marker for Diagnosing Micrometastasis in Gastric Cancer. Ann Surg Oncol 2009Google Scholar
  161. 161.
    Sharma G, Mirza S, Parshad R, Srivastava A, Datta Gupta S, Pandya P, Ralhan R. CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem 2009Google Scholar
  162. 162.
    Li Y, Meng G, Huang L, Guo QN (2009) Hypomethylation of the P3 promoter is associated with up-regulation of IGF2 expression in human osteosarcoma. Hum Pathol 40:1441–1447PubMedCrossRefGoogle Scholar
  163. 163.
    Ito Y, Koessler T, Ibrahim AE, Rai S, Vowler SL, Abu-Amero S, Silva AL, Maia AT, Huddleston JE, Uribe-Lewis S, Woodfine K, Jagodic M, Nativio R, Dunning A, Moore G, Klenova E, Bingham S, Pharoah PD, Brenton JD, Beck S, Sandhu MS, Murrell A (2008) Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet 17:2633–2643PubMedCrossRefGoogle Scholar
  164. 164.
    Tang SH, Yang DH, Huang W, Zhou HK, Lu XH, Ye G (2006) Hypomethylated P4 promoter induces expression of the insulin-like growth factor-II gene in hepatocellular carcinoma in a Chinese population. Clin Cancer Res 12:4171–4177PubMedCrossRefGoogle Scholar
  165. 165.
    Lee BB, Lee EJ, Jung EH, Chun HK, Chang DK, Song SY, Park J, Kim DH (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 15:6185–6191PubMedCrossRefGoogle Scholar
  166. 166.
    Su HY, Lai HC, Lin YW, Chou YC, Liu CY, Yu MH (2009) An epigenetic marker panel for screening and prognostic prediction of ovarian cancer. Int J Cancer 124:387–393PubMedCrossRefGoogle Scholar
  167. 167.
    Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, Olaru AV, Paun BC, Yang J, Kan T, Ito T, Hamilton JP, Selaru FM, Agarwal R, David S, Abraham JM, Wolfsen HC, Wallace MB, Shaheen NJ, Washington K, Wang J, Canto MI, Bhattacharyya A, Nelson MA, Wagner PD, Romero Y, Wang KK, Feng Z, Sampliner RE, Meltzer SJ (2009) A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res 69:4112–4115PubMedCrossRefGoogle Scholar
  168. 168.
    Sato F, Jin Z, Schulmann K, Wang J, Greenwald BD, Ito T, Kan T, Hamilton JP, Yang J, Paun B, David S, Olaru A, Cheng Y, Mori Y, Abraham JM, Yfantis HG, Wu TT, Fredericksen MB, Wang KK, Canto M, Romero Y, Feng Z, Meltzer SJ (2008) Three-tiered risk stratification model to predict progression in Barrett’s esophagus using epigenetic and clinical features. PLoS ONE 3:e1890PubMedCrossRefGoogle Scholar
  169. 169.
    Hsu HS, Chen TP, Wen CK, Hung CH, Chen CY, Chen JT, Wang YC (2007) Multiple genetic and epigenetic biomarkers for lung cancer detection in cytologically negative sputum and a nested case-control study for risk assessment. J Pathol 213:412–419PubMedCrossRefGoogle Scholar
  170. 170.
    Brune K, Hong SM, Li A, Yachida S, Abe T, Griffith M, Yang D, Omura N, Eshleman J, Canto M, Schulick R, Klein AP, Hruban RH, Iacobuzio-Donohue C, Goggins M (2008) Genetic and epigenetic alterations of familial pancreatic cancers. Cancer Epidemiol Biomarkers Prev 17:3536–3542PubMedCrossRefGoogle Scholar
  171. 171.
    Hoque MO, Feng Q, Toure P, Dem A, Critchlow CW, Hawes SE, Wood T, Jeronimo C, Rosenbaum E, Stern J, Yu M, Trink B, Kiviat NB, Sidransky D (2006) Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol 24:4262–4269PubMedCrossRefGoogle Scholar
  172. 172.
    Chen JT, Chen YC, Wang YC, Tseng RC, Chen CY (2002) Alterations of the p16(ink4a) gene in resected nonsmall cell lung tumors and exfoliated cells within sputum. Int J Cancer 98:724–731PubMedCrossRefGoogle Scholar
  173. 173.
    Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT, Shih CM, Chen CY (2003) Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 111:887–895PubMedGoogle Scholar
  174. 174.
    Destro A, Bianchi P, Alloisio M, Laghi L, Di Gioia S, Malesci A, Cariboni U, Gribaudi G, Bulfamante G, Marchetti A, Bosari S, Infante M, Ravasi G, Roncalli M (2004) K-ras and p16(INK4A)alterations in sputum of NSCLC patients and in heavy asymptomatic chronic smokers. Lung Cancer 44:23–32PubMedCrossRefGoogle Scholar
  175. 175.
    Olaussen KA, Soria JC, Park YW, Kim HJ, Kim SH, Ro JY, Andre F, Jang SJ (2005) Assessing abnormal gene promoter methylation in paraffin-embedded sputum from patients with NSCLC. Eur J Cancer 41:2112–2119PubMedCrossRefGoogle Scholar
  176. 176.
    Dulaimi E, Uzzo RG, Greenberg RE, Al-Saleem T, Cairns P (2004) Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin Cancer Res 10:1887–1893PubMedCrossRefGoogle Scholar
  177. 177.
    Battagli C, Uzzo RG, Dulaimi E, Ibanez de Caceres I, Krassenstein R, Al-Saleem T, Greenberg RE, Cairns P (2003) Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res 63:8695–8699PubMedGoogle Scholar
  178. 178.
    Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, Gao B, Wang W, Gu L, Meng J, Wang J, Feng X, Li Y, Yao X, Zhu J (2007) A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res 13:7296–7304PubMedCrossRefGoogle Scholar
  179. 179.
    Woodson K, O’Reilly KJ, Hanson JC, Nelson D, Walk EL, Tangrea JA. The usefulness of the detection of GSTP1 methylation in urine as a biomarker in the diagnosis of prostate cancer. J Urol 2008;179:508–11; discussion 511–2PubMedCrossRefGoogle Scholar
  180. 180.
    Lenhard K, Bommer GT, Asutay S, Schauer R, Brabletz T, Goke B, Lamerz R, Kolligs FT (2005) Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. Clin Gastroenterol Hepatol 3:142–149PubMedCrossRefGoogle Scholar
  181. 181.
    Huang ZH, Li LH, Yang F, Wang JF (2007) Detection of aberrant methylation in fecal DNA as a molecular screening tool for colorectal cancer and precancerous lesions. World J Gastroenterol 13:950–954PubMedGoogle Scholar
  182. 182.
    Wang DR, Tang D (2008) Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol 14:524–531PubMedCrossRefGoogle Scholar
  183. 183.
    Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B, Khochbin S, Gazzeri S (2008) Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 14:7237–7245CrossRefGoogle Scholar
  184. 184.
    Cameron AJ (1998) Management of Barrett’s esophagus. Mayo Clin Proc 73:457–461PubMedCrossRefGoogle Scholar
  185. 185.
    Wang KK, Sampliner RE (2008) Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol 103:788–797PubMedCrossRefGoogle Scholar
  186. 186.
    Montgomery E (2005) Is there a way for pathologists to decrease interobserver variability in the diagnosis of dysplasia? Arch Pathol Lab Med 129:174–176PubMedGoogle Scholar
  187. 187.
    Hamilton JP, Sato F, Greenwald BD, Suntharalingam M, Krasna MJ, Edelman MJ, Doyle A, Berki AT, Abraham JM, Mori Y, Kan T, Mantzur C, Paun B, Wang S, Ito T, Jin Z, Meltzer SJ (2006) Promoter methylation and response to chemotherapy and radiation in esophageal cancer. Clin Gastroenterol Hepatol 4:701–708PubMedCrossRefGoogle Scholar
  188. 188.
    Selaru FM, David S, Meltzer SJ, Hamilton JP (2009) Epigenetic events in gastrointestinal cancer. Am J Gastroenterol 104:1910–1912PubMedCrossRefGoogle Scholar
  189. 189.
    Dehan P, Kustermans G, Guenin S, Horion J, Boniver J, Delvenne P (2009) DNA methylation and cancer diagnosis: new methods and applications. Expert Rev Mol Diagn 9:651–657PubMedCrossRefGoogle Scholar
  190. 190.
    Duvic M, Vu J (2007) Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs 16:1111–1120PubMedCrossRefGoogle Scholar
  191. 191.
    Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468PubMedCrossRefGoogle Scholar
  192. 192.
    McCabe N, Lord CJ, Tutt AN, Martin NM, Smith GC, Ashworth A (2005) BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of Poly (ADP-Ribose) polymerase: an issue of potency. Cancer Biol Ther 4:934–936PubMedCrossRefGoogle Scholar
  193. 193.
    Ratnam K, Low JA (2007) Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 13:1383–1388PubMedCrossRefGoogle Scholar
  194. 194.
    Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A, Curtin N, Boddy A, McHugh P, Newell D, Harris A, Johnson P, Steinfeldt H, Dewji R, Wang D, Robson L, Calvert H (2008) Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 14:7917–7923PubMedCrossRefGoogle Scholar
  195. 195.
    Bedikian AY, Papadopoulos NE, Kim KB, Hwu WJ, Homsi J, Glass MR, Cain S, Rudewicz P, Vernillet L, Hwu P (2009) A phase IB trial of intravenous INO-1001 plus oral temozolomide in subjects with unresectable stage-III or IV melanoma. Cancer Invest 27:756–763PubMedCrossRefGoogle Scholar
  196. 196.
    Kaminskas E, Farrell A, Abraham S, Baird A, Hsieh LS, Lee SL, Leighton JK, Patel H, Rahman A, Sridhara R, Wang YC, Pazdur R (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608PubMedCrossRefGoogle Scholar
  197. 197.
    Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL, Larson RA (2006) Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 24:3895–3903PubMedCrossRefGoogle Scholar
  198. 198.
    Kantarjian HM, O’Brien S, Shan J, Aribi A, Garcia-Manero G, Jabbour E, Ravandi F, Cortes J, Davisson J, Issa JP (2007) Update of the decitabine experience in higher risk myelodysplastic syndrome and analysis of prognostic factors associated with outcome. Cancer 109:265–273PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of GastroenterologyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations