Skip to main content

Pre-malignant Disease in the Prostate

  • Chapter
  • First Online:
Pre-Invasive Disease: Pathogenesis and Clinical Management

Abstract

Carcinoma of the prostate (CaP) is the most common non-cutaneous cancer in men and the second most common cause of cancer related death. Mortality remains high despite improvements in diagnosis in the developed world. A better understanding of the mechanisms involved in the development of prostate cancer should allow targeted diagnosis, prevention and treatment, and may improve mortality. In this chapter, we outline the two principal pre-malignant histological types, prostate intraepithelial neoplasia (PIN) and atypical small acinar proliferation (ASAP) and the likelihood of progression to CaP if these diagnoses are made. We then assess current understanding of factors contributing to the initiation of pre-malignant disease and progression to CaP as they relate to stem cells, inflammation, diet and specific genetic mutations or aberrant pathways. Finally, we discuss the translational potential of these factors in early detection and prevention of CaP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Office for National Statistics (UK) (2007) Mortality statistics: cause, 2005 Newport: Office for National Statistics

    Google Scholar 

  2. Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD (1993) The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150(2 Pt 1):379–385

    PubMed  CAS  Google Scholar 

  3. Hsing AW, Tsao L, Devesa SS (2000) International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 85(1):60–67

    Article  PubMed  CAS  Google Scholar 

  4. Cancer Research UK cancerstats (2009) http://info.cancerresearchuk.org/cancerstats/types/prostate/mortality/index.htm

  5. Patel M, Chhasatia M, Parmar P (2010) Antibacterial and DNA interaction studies of zinc(II) complexes with quinolone family member, ciprofloxacin. Eur J Med Chem 45(2):439–446

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida K, Kawano N, Yoshiike M, Yoshida M, Iwamoto T, Morisawa M (2008) Physiological roles of semenogelin I and zinc in sperm motility and semen coagulation on ejaculation in humans. Mol Hum Reprod 14(3):151–156

    Article  PubMed  CAS  Google Scholar 

  7. Shariff AH, Ather MH (2006) Neuroendocrine differentiation in prostate cancer. Urology 68(1):2–8

    Article  PubMed  Google Scholar 

  8. Parkinson MC (1995) Pre-neoplastic lesions of the prostate. Histopathology 27(4):301–311

    Article  PubMed  CAS  Google Scholar 

  9. Hedrick L, Epstein JI (1989) Use of keratin 903 as an adjunct in the diagnosis of prostate carcinoma. Am J Surg Pathol 13(5):389–396

    Article  PubMed  CAS  Google Scholar 

  10. Epstein JI, Grignon DJ, Humphrey PA, McNeal JE, Sesterhenn IA, Troncoso P et al (1995) Interobserver reproducibility in the diagnosis of prostatic intraepithelial neoplasia. Am J Surg Pathol 19(8):873–886

    Article  PubMed  CAS  Google Scholar 

  11. Bostwick DG, Brawer MK (1987) Prostatic intra-epithelial neoplasia and early invasion in prostate cancer. Cancer 59(4):788–794

    Article  PubMed  CAS  Google Scholar 

  12. Bostwick DG, Amin MB, Dundore P, Marsh W, Schultz DS (1993) Architectural patterns of high-grade prostatic intraepithelial neoplasia. Hum Pathol 24(3):298–310

    Article  PubMed  CAS  Google Scholar 

  13. Sakr WA, Macoska JA, Benson P, Grignon DJ, Wolman SR, Pontes JE et al (1994) Allelic loss in locally metastatic, multisampled prostate cancer. Cancer Res 54(12):3273–3277

    PubMed  CAS  Google Scholar 

  14. Nagle RB, Brawer MK, Kittelson J, Clark V (1991) Phenotypic relationships of prostatic intraepithelial neoplasia to invasive prostatic carcinoma. Am J Pathol 138(1):119–128

    PubMed  CAS  Google Scholar 

  15. Bostwick DG, Montironi R, Sesterhenn IA (2000) Diagnosis of prostatic intraepithelial neoplasia: prostate working group/consensus report. Scand J Urol Nephrol Suppl (205):3-10

    Google Scholar 

  16. Bostwick DG, Qian J (2004) High-grade prostatic intraepithelial neoplasia. Mod Pathol 17(3):360–379

    Article  PubMed  Google Scholar 

  17. Epstein JI, Herawi M (2006) Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma: implications for patient care. J Urol 175(3 Pt 1):820–834

    Article  PubMed  Google Scholar 

  18. Gallo F, Chiono L, Gastaldi E, Venturino E, Giberti C (2008) Prognostic significance of high-grade prostatic intraepithelial neoplasia (HGPIN): risk of prostatic cancer on repeat biopsies. Urology 72(3):628–632

    Article  PubMed  Google Scholar 

  19. Netto GJ, Epstein JI (2006) Widespread high-grade prostatic intraepithelial neoplasia on prostatic needle biopsy: a significant likelihood of subsequently diagnosed adenocarcinoma. Am J Surg Pathol 30(9):1184–1188

    Article  PubMed  Google Scholar 

  20. Schoenfield L, Jones JS, Zippe CD, Reuther AM, Klein E, Zhou M et al (2007) The incidence of high-grade prostatic intraepithelial neoplasia and atypical glands suspicious for carcinoma on first-time saturation needle biopsy, and the subsequent risk of cancer. BJU Int 99(4):770–774

    Article  PubMed  CAS  Google Scholar 

  21. Roscigno M, Scattoni V, Freschi M, Raber M, Colombo R, Bertini R et al (2004) Monofocal and plurifocal high-grade prostatic intraepithelial neoplasia on extended prostate biopsies: factors predicting cancer detection on extended repeat biopsy. Urology 63(6):1105–1110

    Article  PubMed  Google Scholar 

  22. Oderda M, Gontero P (2009) High-grade prostatic intraepithelial neoplasia and atypical small acinar proliferation: is repeat biopsy still necessary? BJU Int 104(11):1554–1556

    Article  PubMed  Google Scholar 

  23. Bostwick DG, Srigley J, Grignon D, Maksem J, Humphrey P, van der Kwast TH et al (1993) Atypical adenomatous hyperplasia of the prostate: morphologic criteria for its distinction from well-differentiated carcinoma. Hum Pathol 24(8):819–832

    Article  PubMed  CAS  Google Scholar 

  24. Scattoni V, Roscigno M, Freschi M, Briganti A, Fantini GV, Bertini R et al (2005) Predictors of prostate cancer after initial diagnosis of atypical small acinar proliferation at 10 to 12 core biopsies. Urology 66(5):1043–1047

    Article  PubMed  Google Scholar 

  25. English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11(3):229–242

    Article  PubMed  CAS  Google Scholar 

  26. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398(6729):714–718

    Article  PubMed  CAS  Google Scholar 

  27. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L et al (2000) p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 157(6):1769–1775

    Article  PubMed  CAS  Google Scholar 

  28. Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456(7223):804–808

    Article  PubMed  CAS  Google Scholar 

  29. Salm SN, Burger PE, Coetzee S, Goto K, Moscatelli D, Wilson EL (2005) TGF-{beta} maintains dormancy of prostatic stem cells in the proximal region of ducts. J Cell Biol 170(1):81–90

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461(7263):495–500

    Article  PubMed  CAS  Google Scholar 

  31. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  PubMed  CAS  Google Scholar 

  32. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422(6929):313–317

    Article  PubMed  CAS  Google Scholar 

  33. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997

    PubMed  CAS  Google Scholar 

  34. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    Article  PubMed  CAS  Google Scholar 

  35. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34(Pt 5):647–662

    PubMed  CAS  Google Scholar 

  36. Yardy GW, Bicknell DC, Wilding JL, Bartlett S, Liu Y, Winney B et al (2009) Mutations in the AXIN1 gene in advanced prostate cancer. Eur Urol 56(3):486–494

    Article  PubMed  CAS  Google Scholar 

  37. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009):707–712

    Article  PubMed  CAS  Google Scholar 

  38. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  39. Vias M, Ramos-Montoya A, Mills IG (2008) Terminal and progenitor lineage-survival oncogenes as cancer markers. Trends Mol Med 14(11):486–494

    Article  PubMed  CAS  Google Scholar 

  40. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117(Pt 16):3539–3545

    Article  PubMed  CAS  Google Scholar 

  41. Gu G, Yuan J, Wills M, Kasper S (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67(10):4807–4815

    Article  PubMed  CAS  Google Scholar 

  42. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    Article  PubMed  CAS  Google Scholar 

  43. Sotomayor P, Godoy A, Smith GJ, Huss WJ (2009) Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 69(4):401–410

    Article  PubMed  CAS  Google Scholar 

  44. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed  CAS  Google Scholar 

  45. Groopman JD, Kensler TW (2005) Role of metabolism and viruses in aflatoxin-induced liver cancer. Toxicol Appl Pharmacol 206(2):131–137

    Article  PubMed  CAS  Google Scholar 

  46. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    Article  PubMed  CAS  Google Scholar 

  47. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37

    Article  PubMed  CAS  Google Scholar 

  48. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457(7225):102–106

    Article  PubMed  CAS  Google Scholar 

  49. McNeal JE (1988) Normal histology of the prostate. Am J Surg Pathol 12(8):619–633

    Article  PubMed  CAS  Google Scholar 

  50. De Marzo AM, Marchi VL, Epstein JI, Nelson WG (1999) Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155(6):1985–1992

    Article  PubMed  Google Scholar 

  51. Putzi MJ, De Marzo AM (2000) Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology 56(5):828–832

    Article  PubMed  CAS  Google Scholar 

  52. Wang W, Bergh A, Damber JE (2009) Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate. Prostate 69(13):1378–1386

    Article  PubMed  Google Scholar 

  53. Elkahwaji JE, Hauke RJ, Brawner CM (2009) Chronic bacterial inflammation induces prostatic intraepithelial neoplasia in mouse prostate. Br J Cancer 101(10):1740–1748

    Article  PubMed  CAS  Google Scholar 

  54. Tomas D, Kruslin B, Rogatsch H, Schafer G, Belicza M, Mikuz G (2007) Different types of atrophy in the prostate with and without adenocarcinoma. Eur Urol 51(1):98–103; discussion 03–04

    Article  PubMed  Google Scholar 

  55. Billis A (1998) Prostatic atrophy: an autopsy study of a histologic mimic of adenocarcinoma. Mod Pathol 11(1):47–54

    PubMed  CAS  Google Scholar 

  56. Bostwick DC, Cheng L (eds) (2008) Urologic surgical pathology. Chapter 8: Non-neoplastic diseases of the prostate, 2nd ed. Mosby Elsevier, Philadelphia, PA

    Google Scholar 

  57. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG et al (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7(4):256–269

    Article  PubMed  CAS  Google Scholar 

  58. Handsfield HH, Lipman TO, Harnisch JP, Tronca E, Holmes KK (1974) Asymptomatic gonorrhea in men. Diagnosis, natural course, prevalence and significance. N Engl J Med 290(3):117–123

    Article  PubMed  CAS  Google Scholar 

  59. Poletti F, Medici MC, Alinovi A, Menozzi MG, Sacchini P, Stagni G et al (1985) Isolation of Chlamydia trachomatis from the prostatic cells in patients affected by nonacute abacterial prostatitis. J Urol 134(4):691–693

    PubMed  CAS  Google Scholar 

  60. Stark JR, Judson G, Alderete JF, Mundodi V, Kucknoor AS, Giovannucci EL et al (2009) Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians’ Health Study. J Natl Cancer Inst 101(20):1406–1411

    Article  PubMed  Google Scholar 

  61. Drach GW (1975) Prostatitis: man’s hidden infection. Urol Clin North Am 2(3):499–520

    PubMed  CAS  Google Scholar 

  62. Ozden E, Bostanci Y, Yakupoglu KY, Akdeniz E, Yilmaz AF, Tulek N et al (2009) Incidence of acute prostatitis caused by extended-spectrum beta-lactamase-producing Escherichia coli after transrectal prostate biopsy. Urology 74(1):119–123

    Article  PubMed  Google Scholar 

  63. Zambrano A, Kalantari M, Simoneau A, Jensen JL, Villarreal LP (2002) Detection of human polyomaviruses and papillomaviruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate 53(4):263–276

    Article  PubMed  CAS  Google Scholar 

  64. Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170(3):998–1002

    Article  PubMed  Google Scholar 

  65. Doble A, Harris JR, Taylor-Robinson D (1991) Prostatodynia and herpes simplex virus infection. Urology 38(3):247–248

    Article  PubMed  CAS  Google Scholar 

  66. Batstone GR, Doble A (2003) Chronic prostatitis. Curr Opin Urol 13(1):23–29

    Article  PubMed  Google Scholar 

  67. Sutcliffe S, Giovannucci E, De Marzo AM, Leitzmann MF, Willett WC, Platz EA (2006) Gonorrhea, syphilis, clinical prostatitis, and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15(11):2160–2166

    Article  PubMed  Google Scholar 

  68. Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, Klein EA et al (2006) Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2(3):e25

    Article  PubMed  CAS  Google Scholar 

  69. Schlaberg R, Choe DJ, Brown KR, Thaker HM, Singh IR (2009) XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors. Proc Natl Acad Sci U S A 106(38):16351–16356

    Article  PubMed  CAS  Google Scholar 

  70. Kirby RS, Lowe D, Bultitude MI, Shuttleworth KE (1982) Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br J Urol 54(6):729–731

    Article  PubMed  CAS  Google Scholar 

  71. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241

    Article  PubMed  CAS  Google Scholar 

  72. Liu W, Li SW, Zheng XM, Hu LQ, Luo Y (2008) Intraprostatic urinary reflux associated prostatitis caused by partial urethral obstruction in the rat model. Zhonghua Nan Ke Xue 14(1):11–14

    PubMed  CAS  Google Scholar 

  73. Chen X, Zhao J, Salim S, Garcia FU (2006) Intraprostatic spermatozoa: zonal distribution and association with atrophy. Hum Pathol 37(3):345–351

    Article  PubMed  Google Scholar 

  74. Huang L, Pu Y, Alam S, Birch L, Prins GS (2004) Estrogenic regulation of signaling pathways and homeobox genes during rat prostate development. J Androl 25(3):330–337

    PubMed  CAS  Google Scholar 

  75. Huang L, Pu Y, Alam S, Birch L, Prins GS (2005) The role of Fgf10 signaling in branching morphogenesis and gene expression of the rat prostate gland: lobe-specific suppression by neonatal estrogens. Dev Biol 278(2):396–414

    Article  PubMed  CAS  Google Scholar 

  76. Ponniah S, Arah I, Alexander RB (2000) PSA is a candidate self-antigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome. Prostate 44(1):49–54

    Article  PubMed  CAS  Google Scholar 

  77. Lamb AD, Qadan M, Roberts S, Timlin H, Campbell FM, Gregor K, et al (2009) CD4+ and CD8+ T-lymphocyte scores cannot reliably predict progression in patients with benign prostatic hyperplasia (BPH). BJU Int in print–DOI awaited

    Google Scholar 

  78. Michaud DS, Augustsson K, Rimm EB, Stampfer MJ, Willet WC, Giovannucci E (2001) A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control 12(6):557–567

    Article  PubMed  CAS  Google Scholar 

  79. Shimizu H, Ross RK, Bernstein L, Yatani R, Henderson BE, Mack TM (1991) Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer 63(6):963–966

    Article  PubMed  CAS  Google Scholar 

  80. Whittemore AS, Kolonel LN, Wu AH, John EM, Gallagher RP, Howe GR et al (1995) Prostate cancer in relation to diet, physical activity, and body size in blacks, whites, and Asians in the United States and Canada. J Natl Cancer Inst 87(9):652–661

    Article  PubMed  CAS  Google Scholar 

  81. Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1993) A prospective cohort study of vasectomy and prostate cancer in US men. JAMA 269(7):873–877

    Article  PubMed  CAS  Google Scholar 

  82. Mori M, Masumori N, Fukuta F, Nagata Y, Sonoda T, Sakauchi F et al (2009) Traditional Japanese diet and prostate cancer. Mol Nutr Food Res 53(2):191–200

    Article  PubMed  CAS  Google Scholar 

  83. Gonzalez A, Peters U, Lampe JW, White E (2009) Zinc intake from supplements and diet and prostate cancer. Nutr Cancer 61(2):206–215

    Article  PubMed  CAS  Google Scholar 

  84. Itsiopoulos C, Hodge A, Kaimakamis M (2009) Can the Mediterranean diet prevent prostate cancer? Mol Nutr Food Res 53(2):227–239

    Article  PubMed  CAS  Google Scholar 

  85. Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92(18):1472–1489

    Article  PubMed  CAS  Google Scholar 

  86. Kobayashi N, Barnard RJ, Said J, Hong-Gonzalez J, Corman DM, Ku M et al (2008) Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Res 68(8):3066–3073

    Article  PubMed  CAS  Google Scholar 

  87. Knize MG, Felton JS (2005) Formation and human risk of carcinogenic heterocyclic amines formed from natural precursors in meat. Nutr Rev 63(5):158–165

    Article  PubMed  Google Scholar 

  88. Sugimura T, Wakabayashi K, Nakagama H, Nagao M (2004) Heterocyclic amines: mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95(4):290–299

    Article  PubMed  CAS  Google Scholar 

  89. Nakai Y, Nelson WG, De Marzo AM (2007) The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res 67(3):1378–1384

    Article  PubMed  CAS  Google Scholar 

  90. Harper CE, Cook LM, Patel BB, Wang J, Eltoum IA, Arabshahi A et al (2009) Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats. Prostate 69(15):1668–1682

    Article  PubMed  CAS  Google Scholar 

  91. Ma RW, Chapman K (2009) A systematic review of the effect of diet in prostate cancer prevention and treatment. J Hum Nutr Diet 22(3):187–199; quiz 200–202

    Article  PubMed  Google Scholar 

  92. Chang M, Tsuchiya K, Batchelor RH, Rabinovitch PS, Kulander BG, Haggitt RC et al (1994) Deletion mapping of chromosome 8p in colorectal carcinoma and dysplasia arising in ulcerative colitis, prostatic carcinoma, and malignant fibrous histiocytomas. Am J Pathol 144(1):1–6

    PubMed  CAS  Google Scholar 

  93. Abate-Shen C, Shen MM (2000) Molecular genetics of prostate cancer. Genes Dev 14(19):2410–2434

    Article  PubMed  CAS  Google Scholar 

  94. Kim MJ, Bhatia-Gaur R, Banach-Petrosky WA, Desai N, Wang Y, Hayward SW et al (2002) Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res 62(11):2999–3004

    PubMed  CAS  Google Scholar 

  95. Tomlins SA, Rubin MA, Chinnaiyan AM (2006) Integrative biology of prostate cancer progression. Annu Rev Pathol 1:243–271

    Article  PubMed  CAS  Google Scholar 

  96. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5(8):671–688

    Article  PubMed  CAS  Google Scholar 

  97. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4(3):209–221

    Article  PubMed  CAS  Google Scholar 

  98. Luchman HA, Benediktsson H, Villemaire ML, Peterson AC, Jirik FR (2008) The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision. PLoS One 3(12):e3940

    Article  PubMed  CAS  Google Scholar 

  99. Majumder PK, Grisanzio C, O’Connell F, Barry M, Brito JM, Xu Q et al (2008) A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 14(2):146–155

    Article  PubMed  CAS  Google Scholar 

  100. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8(7):497–511

    Article  PubMed  CAS  Google Scholar 

  101. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648

    Article  PubMed  CAS  Google Scholar 

  102. Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J et al (2007) TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 31(6):882–888

    Article  PubMed  Google Scholar 

  103. Carver BS, Tran J, Chen Z, Carracedo-Perez A, Alimonti A, Nardella C et al (2009) ETS rearrangements and prostate cancer initiation. Nature 457(7231):E1; discussion E2–E3

    Article  PubMed  CAS  Google Scholar 

  104. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH et al (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41(5):524–526

    Article  PubMed  CAS  Google Scholar 

  105. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA et al (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38(6):652–658

    Article  PubMed  CAS  Google Scholar 

  106. Jia L, Landan G, Pomerantz M, Jaschek R, Herman P, Reich D et al (2009) Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet 5(8):e1000597

    Article  PubMed  CAS  Google Scholar 

  107. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao X, Carver BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22

    Google Scholar 

  108. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4(3):223–238

    Article  PubMed  CAS  Google Scholar 

  109. Bernard D, Pourtier-Manzanedo A, Gil J, Beach DH (2003) Myc confers androgen-independent prostate cancer cell growth. J Clin Invest 112(11):1724–1731

    PubMed  CAS  Google Scholar 

  110. Kim J, Eltoum IE, Roh M, Wang J, Abdulkadir SA (2009) Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet 5(7):e1000542

    Article  PubMed  CAS  Google Scholar 

  111. Watt FM, Frye M, Benitah SA (2008) MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer 8(3):234–242

    Article  PubMed  CAS  Google Scholar 

  112. Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40(3):316–321

    Article  PubMed  CAS  Google Scholar 

  113. Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G et al (2009) Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 41(10):1116–1121

    Article  PubMed  CAS  Google Scholar 

  114. Al Olama AA, Kote-Jarai Z, Giles GG, Guy M, Morrison J, Severi G et al (2009) Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet 41(10):1058–1060

    Article  PubMed  CAS  Google Scholar 

  115. Antonarakis ES, Heath EI, Walczak JR, Nelson WG, Fedor H, De Marzo AM et al (2009) Phase II, randomized, placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers. J Clin Oncol 27(30):4986–4993

    Article  PubMed  CAS  Google Scholar 

  116. Nonn L, Ananthanarayanan V, Gann PH (2009) Evidence for field cancerization of the prostate. Prostate 69(13):1470–1479

    Article  PubMed  Google Scholar 

  117. Whitaker HC, Warren AY, Eeles R, Kote-Jarai Z, Neal DE (2010) The potential value of microseminoprotein-beta as a prostate cancer biomarker and therapeutic target. Prostate 70(3):333–340

    PubMed  CAS  Google Scholar 

  118. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P et al (1999) Roles for Nkx3.1 in prostate development and cancer. Genes Dev 13(8):966–977

    Article  PubMed  CAS  Google Scholar 

  119. Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J et al (2006) NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9(5):367–378

    Article  PubMed  CAS  Google Scholar 

  120. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    Article  PubMed  CAS  Google Scholar 

  121. Gil J, Kerai P, Lleonart M, Bernard D, Cigudosa JC, Peters G et al (2005) Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res 65(6):2179–2185

    Article  PubMed  CAS  Google Scholar 

  122. Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB et al (1998) Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 159(3):941–945

    Article  PubMed  CAS  Google Scholar 

  123. Li C, Larsson C, Futreal A, Lancaster J, Phelan C, Aspenblad U et al (1998) Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene 16(4):481–487

    Article  PubMed  CAS  Google Scholar 

  124. Zhang W, Kapusta LR, Slingerland JM, Klotz LH (1998) Telomerase activity in prostate cancer, prostatic intraepithelial neoplasia, and benign prostatic epithelium. Cancer Res 58(4):619–621

    PubMed  CAS  Google Scholar 

  125. Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO et al (1994) Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54(14):3929–3933

    PubMed  CAS  Google Scholar 

  126. Pisters LL, Troncoso P, Zhau HE, Li W, von Eschenbach AC, Chung LW (1995) c-met proto-oncogene expression in benign and malignant human prostate tissues. J Urol 154(1):293–298

    Article  PubMed  CAS  Google Scholar 

  127. Verras M, Lee J, Xue H, Li TH, Wang Y, Sun Z (2007) The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res 67(3):967–975

    Article  PubMed  CAS  Google Scholar 

  128. Djakiew D (2000) Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate 42(2):150–160

    Article  PubMed  CAS  Google Scholar 

  129. Darby S, Sahadevan K, Khan MM, Robson CN, Leung HY, Gnanapragasam VJ (2006) Loss of Sef (similar expression to FGF) expression is associated with high grade and metastatic prostate cancer. Oncogene 25(29):4122–4127

    Article  PubMed  CAS  Google Scholar 

  130. Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC (1993) p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 53(14):3369–3373

    PubMed  CAS  Google Scholar 

  131. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C et al (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9(4):401–406

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair D. Lamb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lamb, A.D., Warren, A.Y., Neal, D.E. (2011). Pre-malignant Disease in the Prostate. In: Fitzgerald, R. (eds) Pre-Invasive Disease: Pathogenesis and Clinical Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6694-0_22

Download citation

Publish with us

Policies and ethics