Advertisement

The Inflammatory Tissue Microenvironment and the Early Stages of Malignancy

  • Fran Balkwill
Chapter

Abstract

The microenvironment has a critical impact on the malignant potential and eventual outcome of a pre-invasive lesion. A tumour-promoting microenvironment contains many of the cells and mediators of chronic inflammation. The origins of this may be extrinsic i.e. inflammatory stimuli cause or exacerbate the evolution of cells with malignant potential, or intrinsic i.e. the oncogenic changes in the initiated cells induce inflammatory pathways.

Keywords

Papillary Thyroid Carcinoma Malt Lymphoma Chemokine Receptor CXCR4 Inflammatory Microenvironment Human Renal Cell Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedCrossRefGoogle Scholar
  2. 2.
    Ruffell B, DeNardo DG, Affara NI, Coussens LM (2010) Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 21:3–10PubMedCrossRefGoogle Scholar
  3. 3.
    Borrello MG, Alberti L, Fischer A, Degl’innocenti D, Ferrario C, Gariboldi M, Marchesi F, Allavena P, Greco A, Collini P et al (2005) Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. PNAS 102:14825–14830PubMedCrossRefGoogle Scholar
  4. 4.
    De Falco V, Gastellone MD, De Vita G, Cirafici AM, Hershman JM, Guerrero C, Fusco A, Melillo RM, Santoro M (2007) RET/papillary thyroid carcinoma oncogenic signaling through the Rap1 small GTPase. Cancer Res 67:381–390PubMedCrossRefGoogle Scholar
  5. 5.
    Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302PubMedCrossRefGoogle Scholar
  6. 6.
    Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458PubMedCrossRefGoogle Scholar
  7. 7.
    Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, Evan GI (2006) The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev 20:2527–2538PubMedCrossRefGoogle Scholar
  8. 8.
    Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macropscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218PubMedCrossRefGoogle Scholar
  9. 9.
    Galban S, Fan J, Martindale JL, Cheadle C, Hoffman B, Woods MP, Temeles G, Brieger J, Decker J, Gorospe M (2003) von Hippel–Lindau protein-mediated repression of tumor necrosis factor alpha translation revealed through use of cDNA arrays. Mol Cell Biol 23:2316–2328PubMedCrossRefGoogle Scholar
  10. 10.
    Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425: 307–311PubMedCrossRefGoogle Scholar
  11. 11.
    Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner K-U, Moses HL (2008) Transforming growth factor-b regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res 68:1809–1819PubMedCrossRefGoogle Scholar
  12. 12.
    Balkwill, F. (2009). TNF and Cancer: A Timeline. Nat Reviews Cancer, in press.Google Scholar
  13. 13.
    Dinarello CA (2009) Interleukin-1beta and the autoinflammatory diseases. N Engl J Med 360:2467–2470PubMedCrossRefGoogle Scholar
  14. 14.
    Naugler WE, Karin M (2008) The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14:109–119PubMedCrossRefGoogle Scholar
  15. 15.
    Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R (2010) The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21:27–39PubMedCrossRefGoogle Scholar
  16. 16.
    Balkwill F (2004) The significance of cancer cell expression of CXCR4. Semin Cancer Biol 14:171–179PubMedCrossRefGoogle Scholar
  17. 17.
    Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706PubMedCrossRefGoogle Scholar
  18. 18.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357: 539–545PubMedCrossRefGoogle Scholar
  19. 19.
    Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990PubMedCrossRefGoogle Scholar
  20. 20.
    Naugler, W. E., Sakurai, T., Kim, S., Maeda, S., Kim, K. H., Elsharkawy, A. M., and Karin, M. (2007). Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science In pressGoogle Scholar
  21. 21.
    Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitalla S et al (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15:91–102PubMedCrossRefGoogle Scholar
  22. 22.
    Greten FR, Eckman L, Greten TF, Park JM, Li Z-W, Egan LJ, Kagnoff MF, Karin M (2004) IKKb links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296PubMedCrossRefGoogle Scholar
  23. 23.
    Fox JG, Wang TC (2007) Inflammation, atrophy, and gastic cancer. J Clin Invest 117:60–69PubMedCrossRefGoogle Scholar
  24. 24.
    Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21:11–19PubMedCrossRefGoogle Scholar
  25. 25.
    Suganuma M, Kuzuhara T, Yamaguchi K, Fujiki H (2006) Carcinogenic role of tumor necrosis factor-a inducing protein of Helicobacter pylori in human stomach. J Biochem Mol Biol 39:1–8PubMedCrossRefGoogle Scholar
  26. 26.
    Moore R, Owens D, Stamp G, East N, Holdworth H, Arnott C, Burke F, Pasparakis M, Kollias G, Balkwill FR (1999) Tumour necrosis factor – a deficient mice are resistant to skin carcinogenesis. Nat Med 5:828–831PubMedCrossRefGoogle Scholar
  27. 27.
    Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG et al (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–134PubMedCrossRefGoogle Scholar
  28. 28.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 1:24–37CrossRefGoogle Scholar
  29. 29.
    DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102PubMedCrossRefGoogle Scholar
  30. 30.
    Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–739PubMedCrossRefGoogle Scholar
  31. 31.
    Colombo MP, Piconese S (2009) Polyps wrap mast cells and Treg within tumorigenic tentacles. Cancer Res 69:5619–5622PubMedCrossRefGoogle Scholar
  32. 32.
    Gounaris E, Blatner NR, Dennis K, Magnusson F, Gurish MF, Strom TB, Beckhove P, Gounari F, Khazaie K (2009) T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 69:5490–5497PubMedCrossRefGoogle Scholar
  33. 33.
    Cunha GR, Hayward SW, Wang YZ, Ricke WA (2003) Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 107:1–10PubMedCrossRefGoogle Scholar
  34. 34.
    Erez N, Truitt M, Olson P, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147PubMedCrossRefGoogle Scholar
  35. 35.
    Saadi A, Shannon NB, Lao-Sirieix P, O’Donovan M, Walker E, Clemons NJ, Hardwick JS, Zhang C, Das M, Save V et al (2010) Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. Proc Natl Acad Sci U S A 107:2177–2182PubMedCrossRefGoogle Scholar
  36. 36.
    Garber K (2009) First results for agents targeting cancer-related inflammation. J Natl Cancer Inst 101:1110–1112PubMedCrossRefGoogle Scholar
  37. 37.
    Balkwill F, Mantovani A (2010) Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 87:401–406PubMedCrossRefGoogle Scholar
  38. 38.
    Elwood PC, Gallagher AM, Duthie GG, Mur LA, Morgan G (2009) Aspirin, salicylates, and cancer. Lancet 373:1301–1309PubMedCrossRefGoogle Scholar
  39. 39.
    Jacobs EJ, Thun MJ, Bain EB, Rodriguez C, Henley SJ, Calle EE (2007) A large cohort study of long-term daily use of adult-strength aspirin and cancer incidence. J Natl Cancer Inst 99:608–615PubMedCrossRefGoogle Scholar
  40. 40.
    Markowitz SD (2007) Aspirin and colon cancer – targeting prevention? N Engl J Med 356:2195–2198PubMedCrossRefGoogle Scholar
  41. 41.
    Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P, Jankowski J, La Vecchia C, Meyskens F, Senn HJ, Thun M (2009) Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 10:501–507PubMedCrossRefGoogle Scholar
  42. 42.
    Steinbach G, Lynch PM, Phillips RKS, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952PubMedCrossRefGoogle Scholar
  43. 43.
    Epstein, J., Sanderson, I. R., and Macdonald, T. T. (2010). Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr, 1-13.Google Scholar
  44. 44.
    Fujiki H, Suganuma M, Matsuyama S, Miyazaki K (2005) Cancer prevention with green tea polyphenols for the general population, and for patients following cancer treatment. Curr Cancer Ther Rev 1:109–114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Cancer and Inflammation, Institute of Cancer, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK

Personalised recommendations