Skip to main content

Precursor Lesions of Pancreatic Cancer

  • Chapter
  • First Online:
Pre-Invasive Disease: Pathogenesis and Clinical Management

Abstract

Pancreatic ductal adenocarcinoma (a.k.a. PDAC) is a disease of near-uniform lethality. Multiple lines of evidence suggest that PDAC does not arise de novo. Several distinct subtypes of non-invasive precursors of PDAC have been identified in the past two decades, including the microscopic Pancreatic intraepith­elial neoplasia (PanIN), which is by far the most common precursor lesion, f­ollowed by the macroscopic (cystic) precursor lesions, comprised of Intraductal Papillary Mucinous Neoplasm (IPMN) and Mucinous Cystic Neoplasm (MCN). In this review, we discuss the diagnostic features for each of these PDAC precursor subtypes, and present the salient molecular alterations underlying their path­ogenesis and progression to invasive neoplasia. Finally, the translational implications of identifying PDAC precursor lesions are discussed, particularly in the context of early detection of PDAC in at-risk populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    PubMed  Google Scholar 

  2. Maitra A, Hruban RH (2008) Pancreatic cancer. Annu Rev Pathol 3:157–188

    PubMed  CAS  Google Scholar 

  3. Lieberman DA (2009) Clinical practice. Screening for colorectal cancer. N Engl J Med 361:1179–1187

    PubMed  CAS  Google Scholar 

  4. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S (2007) Human papillomavirus and cervical cancer. Lancet 370:890–907

    PubMed  CAS  Google Scholar 

  5. -year mortality from breast cancer in the UK Trial of Early Detection of Breast Cancer (1999) Lancet 353:1909–1914.

    Google Scholar 

  6. Berry DA, Cronin KA, Plevritis SK et al (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353:1784–1792

    PubMed  CAS  Google Scholar 

  7. Hulst SPL (1905) Zur kenntnis der genese des adenokarzinoms und karzinoms des pankreas. Virchows Arch 180:288–316

    Google Scholar 

  8. Cubilla AL, Fitzgerald PJ (1976) Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res 36:2690–2698

    PubMed  CAS  Google Scholar 

  9. Kozuka S, Sassa R, Taki T et al (1979) Relation of pancreatic duct hyperplasia to carcinoma. Cancer 43:1418–1428

    PubMed  CAS  Google Scholar 

  10. Andea A, Sarkar F, Adsay VN (2003) Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Mod Pathol 16:996–1006

    PubMed  Google Scholar 

  11. Hruban RH, Adsay NV, Albores-Saavedra J et al (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25:579–586

    PubMed  CAS  Google Scholar 

  12. Hruban RH, Takaori K, Klimstra DS et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28:977–987

    PubMed  Google Scholar 

  13. Brune K, Abe T, Canto M et al (2006) Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol 30:1067–1076

    PubMed  Google Scholar 

  14. Detlefsen S, Sipos B, Feyerabend B, Kloppel G (2005) Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Arch 447:800–805

    PubMed  Google Scholar 

  15. Hruban RH, Takaori K, Canto M et al (2007) Clinical importance of precursor lesions in the pancreas. J Hepatobiliary Pancreat Surg 14:255–263

    PubMed  Google Scholar 

  16. Maitra A, Adsay NV, Argani P et al (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16:902–912

    PubMed  Google Scholar 

  17. Yamano M, Fujii H, Takagaki T, Kadowaki N, Watanabe H, Shirai T (2000) Genetic progression and divergence in pancreatic carcinoma. Am J Pathol 156:2123–2133

    PubMed  CAS  Google Scholar 

  18. Biankin AV, Kench JG, Morey AL et al (2001) Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res 61:8830–8837

    PubMed  CAS  Google Scholar 

  19. Lohr M, Kloppel G, Maisonneuve P, Lowenfels AB, Luttges J (2005) Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 7:17–23

    PubMed  Google Scholar 

  20. Maitra A, Ashfaq R, Gunn CR et al (2002) Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol 118:194–201

    PubMed  CAS  Google Scholar 

  21. Fukushima N, Sato N, Ueki T et al (2002) Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol 160:1573–1581

    PubMed  CAS  Google Scholar 

  22. Luttges J, Galehdari H, Brocker V et al (2001) Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol 158:1677–1683

    PubMed  CAS  Google Scholar 

  23. Koorstra JB, Hong SM, Shi C et al (2009) Widespread activation of the DNA damage response in human pancreatic intraepithelial neoplasia. Mod Pathol 22:1439–1445

    PubMed  CAS  Google Scholar 

  24. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    PubMed  CAS  Google Scholar 

  25. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554

    PubMed  CAS  Google Scholar 

  26. Deramaudt T, Rustgi AK (2005) Mutant KRAS in the initiation of pancreatic cancer. Biochim Biophys Acta 1756:97–101

    PubMed  CAS  Google Scholar 

  27. Hingorani SR, Tuveson DA (2003) Ras redux: rethinking how and where Ras acts. Curr Opin Genet Dev 13:6–13

    PubMed  CAS  Google Scholar 

  28. Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57:2140–2143

    PubMed  CAS  Google Scholar 

  29. Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    PubMed  CAS  Google Scholar 

  30. Hingorani SR, Wang L, Multani AS et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    PubMed  CAS  Google Scholar 

  31. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    PubMed  CAS  Google Scholar 

  32. Wilentz RE, Geradts J, Maynard R et al (1998) Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 58:4740–4744

    PubMed  CAS  Google Scholar 

  33. Caldas C, Hahn SA, da Costa LT et al (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32

    PubMed  CAS  Google Scholar 

  34. Ueki T, Toyota M, Sohn T et al (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res 60:1835–1839

    PubMed  CAS  Google Scholar 

  35. Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246

    PubMed  CAS  Google Scholar 

  36. Lal G, Liu L, Hogg D, Lassam NJ, Redston MS, Gallinger S (2000) Patients with both pancreatic adenocarcinoma and melanoma may harbor germline CDKN2A mutations. Genes Chromosom Cancer 27:358–361

    PubMed  CAS  Google Scholar 

  37. Rulyak SJ, Brentnall TA, Lynch HT, Austin MA (2003) Characterization of the neoplastic phenotype in the familial atypical multiple-mole melanoma-pancreatic carcinoma syndrome. Cancer 98:798–804

    PubMed  CAS  Google Scholar 

  38. Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M (1994) Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int J Cancer 58:185–191

    PubMed  CAS  Google Scholar 

  39. Redston MS, Caldas C, Seymour AB et al (1994) p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 54:3025–3033

    PubMed  CAS  Google Scholar 

  40. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    PubMed  CAS  Google Scholar 

  41. Baas IO, Mulder JW, Offerhaus GJ, Vogelstein B, Hamilton SR (1994) An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms. J Pathol 172:5–12

    PubMed  CAS  Google Scholar 

  42. Hahn SA, Schutte M, Hoque AT et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    PubMed  CAS  Google Scholar 

  43. Wilentz RE, Su GH, Dai JL et al (2000) Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of DPC4 inactivation. Am J Pathol 156:37–43

    PubMed  CAS  Google Scholar 

  44. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev 3:807–821

    CAS  Google Scholar 

  45. Wilentz RE, Iacobuzio-Donahue CA, Argani P et al (2000) Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60:2002–2006

    PubMed  CAS  Google Scholar 

  46. D’Andrea AD, Grompe M (2003) The Fanconi anaemia/BRCA pathway. Nat Rev 3:23–34

    Google Scholar 

  47. Shi C, Hruban RH, Klein AP (2009) Familial pancreatic cancer. Arch Pathol Lab Med 133:365–374

    PubMed  Google Scholar 

  48. Jones S, Hruban RH, Kamiyama M et al (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324:217

    PubMed  CAS  Google Scholar 

  49. Goggins M, Hruban RH, Kern SE (2000) BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol 156:1767–1771

    PubMed  CAS  Google Scholar 

  50. Griffin CA, Hruban RH, Long PP, Morsberger LA, Douna-Issa F, Yeo CJ (1994) Chromosome abnormalities in pancreatic adenocarcinoma. Genes Chromosom Cancer 9:93–100

    PubMed  CAS  Google Scholar 

  51. Moskovitz AH, Linford NJ, Brentnall TA et al (2003) Chromosomal instability in pancreatic ductal cells from patients with chronic pancreatitis and pancreatic adenocarcinoma. Genes Chromosom Cancer 37:201–206

    PubMed  Google Scholar 

  52. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168

    PubMed  CAS  Google Scholar 

  53. Greider CW, Blackburn EH (1996) Telomeres, telomerase and cancer. Sci Am 274:92–97

    PubMed  CAS  Google Scholar 

  54. van Heek NT, Meeker AK, Kern SE et al (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161:1541–1547

    PubMed  Google Scholar 

  55. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    PubMed  CAS  Google Scholar 

  56. Omura N, Li CP, Li A et al (2008) Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 7:1146–1156

    PubMed  CAS  Google Scholar 

  57. Tan AC, Jimeno A, Lin SH, et al. (2009) Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol 3(5–6):425–438

    Google Scholar 

  58. Jansen M, Fukushima N, Rosty C et al (2002) Aberrant methylation of the 5’ CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther 1:293–296

    PubMed  CAS  Google Scholar 

  59. Sato N, Fukushima N, Matsubayashi H, Iacobuzio-Donahue CA, Yeo CJ, Goggins M (2006) Aberrant methylation of Reprimo correlates with genetic instability and predicts poor prognosis in pancreatic ductal adenocarcinoma. Cancer 107:251–257

    PubMed  CAS  Google Scholar 

  60. Sato N, Fukushima N, Hruban RH, Goggins M (2008) CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 21:238–244

    PubMed  CAS  Google Scholar 

  61. Sato N, Fukushima N, Maitra A et al (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63:3735–3742

    PubMed  CAS  Google Scholar 

  62. Fukushima N, Walter KM, Uek T et al (2003) Diagnosing pancreatic cancer using methylation specific PCR analysis of pancreatic juice. Cancer Biol Ther 2:78–83

    PubMed  Google Scholar 

  63. Matsubayashi H, Canto M, Sato N et al (2006) DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res 66:1208–1217

    PubMed  CAS  Google Scholar 

  64. Porter D, Polyak K (2003) Cancer target discovery using SAGE. Expert Opin Ther Targets 7:759–769

    PubMed  CAS  Google Scholar 

  65. Myllykangas S, Junnila S, Kokkola A et al (2008) Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes. Int J Cancer 123:817–825

    PubMed  CAS  Google Scholar 

  66. Lin J, Gan CM, Zhang X et al (2007) A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res 17:1304–1318

    PubMed  CAS  Google Scholar 

  67. Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    PubMed  CAS  Google Scholar 

  68. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14:427–432

    PubMed  CAS  Google Scholar 

  69. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264

    PubMed  CAS  Google Scholar 

  70. Iacobuzio-Donahue CA, Ashfaq R, Maitra A et al (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63: 8614–8622

    PubMed  CAS  Google Scholar 

  71. Iacobuzio-Donahue CA, Maitra A, Olsen M et al (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162: 1151–1162

    PubMed  CAS  Google Scholar 

  72. Logsdon CD, Simeone DM, Binkley C et al (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657

    PubMed  CAS  Google Scholar 

  73. Crnogorac-Jurcevic T, Efthimiou E, Capelli P et al (2001) Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene 20:7437–7446

    PubMed  CAS  Google Scholar 

  74. Crnogorac-Jurcevic T, Missiaglia E, Blaveri E et al (2003) Molecular alterations in pancreatic carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly prevalent. J Pathol 201:63–74

    PubMed  CAS  Google Scholar 

  75. Argani P, Rosty C, Reiter RE et al (2001) Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res 61:4320–4324

    PubMed  CAS  Google Scholar 

  76. Argani P, Iacobuzio-Donahue C, Ryu B et al (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 7:3862–3868

    PubMed  CAS  Google Scholar 

  77. Ringel J, Lohr M (2003) The MUC gene family: Their role in diagnosis and early detection of pancreatic cancer. Mol Cancer 2:9

    PubMed  Google Scholar 

  78. Levi E, Klimstra DS, Andea A, Basturk O, Adsay NV (2004) MUC1 and MUC2 in pancreatic neoplasia. J Clin Pathol 57:456–462

    PubMed  CAS  Google Scholar 

  79. Swartz MJ, Batra SK, Varshney GC et al (2002) MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am J Clin Pathol 117:791–796

    PubMed  Google Scholar 

  80. Nagata K, Horinouchi M, Saitou M et al (2007) Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepatobiliary Pancreat Surg 14:243–254

    PubMed  Google Scholar 

  81. Moriya T, Kimura W, Semba S et al (2005) Biological similarities and differences between pancreatic intraepithelial neoplasias and intraductal papillary mucinous neoplasms. Int J Gastrointest Cancer 35:111–119

    PubMed  Google Scholar 

  82. Adsay NV, Merati K, Andea A et al (2002) The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol 15:1087–1095

    PubMed  Google Scholar 

  83. Ruiz i Altaba A, Sanchez P, Dahmane N (2002) Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev 2:361–372

    CAS  Google Scholar 

  84. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    PubMed  CAS  Google Scholar 

  85. Pasca di Magliano M, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M (2006) Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 20:3161–3173

    PubMed  CAS  Google Scholar 

  86. Morton JP, Mongeau ME, Klimstra DS et al (2007) Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci U S A 104:5103–5108

    PubMed  CAS  Google Scholar 

  87. De La OJ, Emerson LL, Goodman JL et al (2008) Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci U S A 105:18907–18912

    Google Scholar 

  88. Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003; doi:10.1038/nature02009

    Google Scholar 

  89. Miyamoto Y, Maitra A, Ghosh B et al (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3:565–576

    PubMed  CAS  Google Scholar 

  90. Prasad NB, Biankin AV, Fukushima N et al (2005) Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res 65:1619–1626

    PubMed  CAS  Google Scholar 

  91. Plentz R, Park JS, Rhim AD, et al (2009) Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 136(5):1741–1749

    Google Scholar 

  92. Rubin LL, de Sauvage FJ (2006) Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 5:1026–1033

    PubMed  CAS  Google Scholar 

  93. Yauch RL, Gould SE, Scales SJ et al (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455:406–410

    PubMed  CAS  Google Scholar 

  94. Feldmann G, Dhara S, Fendrich V et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67:2187–2196

    PubMed  CAS  Google Scholar 

  95. Mullendore ME, Koorstra JB, Li YM, et al (2009) Ligand-dependent notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clin Cancer Res 15(7):2291–2301

    Google Scholar 

  96. Von Hoff DD, Lorusso PM, Rudin CM et al (2009) Inhibition of the hedgehog pathway in advanced Basal-cell carcinoma. N Engl J Med 361:1164–1172

    Google Scholar 

  97. Ohhashi K, Murakami F, Maruyama M (1982) Four cases of mucous secreting pancreatic cancer. Prog Dig Endosc 203:348–351

    Google Scholar 

  98. Belyaev O, Seelig MH, Muller CA, Tannapfel A, Schmidt WE, Uhl W (2008) Intraductal papillary mucinous neoplasms of the pancreas. J Clin Gastroenterol 42:284–294

    PubMed  Google Scholar 

  99. Ferrone CR, Correa-Gallego C, Warshaw AL et al (2009) Current trends in pancreatic cystic neoplasms. Arch Surg 144:448–454

    PubMed  Google Scholar 

  100. Sohn TA, Yeo CJ, Cameron JL et al (2004) Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann Surg 239:788–797, discussion 97–99

    PubMed  Google Scholar 

  101. Salvia R, Fernandez-del Castillo C, Bassi C et al (2004) Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann Surg 239:678–685, discussion 85–87

    PubMed  Google Scholar 

  102. Fernandez-del Castillo C, Targarona J, Thayer SP, Rattner DW, Brugge WR, Warshaw AL (2003) Incidental pancreatic cysts: clinicopathologic characteristics and comparison with symptomatic patients. Arch Surg 138:427–423, discussion 33–34

    PubMed  Google Scholar 

  103. Laffan TA, Horton KM, Klein AP et al (2008) Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol 191:802–807

    PubMed  Google Scholar 

  104. Fernandez-del Castillo C, Alsfasser G, Targarona J, Brugge WR, Warshaw AL (2006) Serum CA 19-9 in the management of cystic lesions of the pancreas. Pancreas 32:220

    PubMed  CAS  Google Scholar 

  105. Brugge WR, Lewandrowski K, Lee-Lewandrowski E et al (2004) Diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst study. Gastroenterology 126: 1330–1336

    PubMed  Google Scholar 

  106. Allen PJ, Qin LX, Tang L, Klimstra D, Brennan MF, Lokshin A (2009) Pancreatic cyst fluid protein expression profiling for discriminating between serous cystadenoma and intraductal papillary mucinous neoplasm. Ann Surg 250(5):754–760

    Google Scholar 

  107. Bassi C, Sarr MG, Lillemoe KD, Reber HA (2008) Natural history of intraductal papillary mucinous neoplasms (IPMN): current evidence and implications for management. J Gastrointest Surg 12:645–650

    PubMed  Google Scholar 

  108. Tanaka M, Kobayashi K, Mizumoto K, Yamaguchi K (2005) Clinical aspects of intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol 40:669–675

    PubMed  Google Scholar 

  109. Tanaka M, Chari S, Adsay V et al (2006) International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology 6:17–32

    PubMed  Google Scholar 

  110. Rodriguez JR, Salvia R, Crippa S et al (2007) Branch-duct intraductal papillary mucinous neoplasms: observations in 145 patients who underwent resection. Gastroenterology 133:72–79, quiz 309–310

    PubMed  Google Scholar 

  111. Salvia R, Crippa S, Falconi M et al (2007) Branch-duct intraductal papillary mucinous neoplasms of the pancreas: to operate or not to operate? Gut 56:1086–1090

    PubMed  Google Scholar 

  112. Chari ST, Yadav D, Smyrk TC et al (2002) Study of recurrence after surgical resection of intraductal papillary mucinous neoplasm of the pancreas. Gastroenterology 123:1500–1507

    PubMed  Google Scholar 

  113. Kobayashi G, Fujita N, Noda Y et al (2005) Mode of progression of intraductal papillary-mucinous tumor of the pancreas: analysis of patients with follow-up by EUS. J Gastroenterol 40:744–751

    PubMed  Google Scholar 

  114. Salvia R, Partelli S, Crippa S et al (2009) Intraductal papillary mucinous neoplasms of the pancreas with multifocal involvement of branch ducts. Am J Surg 198:709–714

    PubMed  Google Scholar 

  115. Furukawa T, Kloppel G, Volkan Adsay N et al (2005) Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch 447: 794–799

    PubMed  Google Scholar 

  116. Yonezawa S, Nakamura A, Horinouchi M, Sato E (2002) The expression of several types of mucin is related to the biological behavior of pancreatic neoplasms. J Hepatobiliary Pancreat Surg 9:328–341

    PubMed  Google Scholar 

  117. Adsay NV, Pierson C, Sarkar F et al (2001) Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol 25:26–42

    PubMed  CAS  Google Scholar 

  118. Adsay NV, Merati K, Basturk O et al (2004) Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol 28:839–848

    PubMed  Google Scholar 

  119. Crippa S, Fernandez-Del Castillo C, Salvia R, et al (2009) Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiological characteristics. Clin Gastroenterol Hepatol 8(2):213–219

    Google Scholar 

  120. Schonleben F, Qiu W, Bruckman KC et al (2007) BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas. Cancer Lett 249:242–248

    PubMed  Google Scholar 

  121. Iacobuzio-Donahue CA, Klimstra DS, Adsay NV et al (2000) Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol 157:755–761

    PubMed  CAS  Google Scholar 

  122. Sahin F, Maitra A, Argani P et al (2003) Loss of Stk11/Lkb1 expression in pancreatic and biliary neoplasms. Mod Pathol 16:686–691

    PubMed  Google Scholar 

  123. Sato N, Rosty C, Jansen M et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159:2017–2022

    PubMed  CAS  Google Scholar 

  124. Schonleben F, Qiu W, Ciau NT et al (2006) PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res 12:3851–3855

    PubMed  Google Scholar 

  125. Sato N, Fukushima N, Maitra A et al (2004) Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 164:903–914

    PubMed  CAS  Google Scholar 

  126. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    PubMed  CAS  Google Scholar 

  127. Szafranska AE, Davison TS, John J et al (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26:4442–4452

    PubMed  CAS  Google Scholar 

  128. Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054

    PubMed  CAS  Google Scholar 

  129. Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908

    PubMed  CAS  Google Scholar 

  130. Habbe N, Koorstra JB, Mendell JT, et al (2009) MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther 8(4):340–346

    PubMed  CAS  Google Scholar 

  131. Klimstra DS (2005) Cystic, mucin-producing neoplasms of the pancreas: the distinguishing features of mucinous cystic neoplasms and intraductal papillary mucinous neoplasms. Semin Diagn Pathol 22:318–329

    PubMed  Google Scholar 

  132. Buscaglia JM, Giday SA, Kantsevoy SV et al (2009) Patient- and cyst-related factors for improved prediction of malignancy within cystic lesions of the pancreas. Pancreatology 9:631–638

    PubMed  Google Scholar 

  133. Garcea G, Ong SL, Rajesh A et al (2008) Cystic lesions of the pancreas. A diagnostic and management dilemma. Pancreatology 8:236–251

    PubMed  CAS  Google Scholar 

  134. Fernandez-del Castillo C (2008) Mucinous cystic neoplasms. J Gastrointest Surg 12:411–413

    PubMed  Google Scholar 

  135. Wilentz RE, Albores-Saavedra J, Hruban RH (2000) Mucinous cystic neoplasms of the pancreas. Semin Diagn Pathol 17:31–42

    PubMed  CAS  Google Scholar 

  136. Wilentz RE, Albores-Saavedra J, Zahurak M et al (1999) Pathologic examination accurately predicts prognosis in mucinous cystic neoplasms of the pancreas. Am J Surg Pathol 23:1320–1327

    PubMed  CAS  Google Scholar 

  137. Crippa S, Salvia R, Warshaw AL et al (2008) Mucinous cystic neoplasm of the pancreas is not an aggressive entity: lessons from 163 resected patients. Ann Surg 247:571–579

    PubMed  Google Scholar 

  138. Jimenez RE, Warshaw AL, Z’Graggen K et al (1999) Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg 230:501–509, discussion 9–11

    PubMed  CAS  Google Scholar 

  139. Iacobuzio-Donahue CA, Wilentz RE, Argani P et al (2000) Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol 24:1544–1548

    PubMed  CAS  Google Scholar 

  140. Luttges J, Feyerabend B, Buchelt T, Pacena M, Kloppel G (2002) The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am J Surg Pathol 26:466–471

    PubMed  CAS  Google Scholar 

  141. Fukushima N, Sato N, Prasad N, Leach SD, Hruban RH, Goggins M (2004) Characterization of gene expression in mucinous cystic neoplasms of the pancreas using oligonucleotide microarrays. Oncogene 23:9042–9051

    PubMed  CAS  Google Scholar 

  142. Ornitz DM, Hammer RE, Messing A, Palmiter RD, Brinster RL (1987) Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice. Science 238:188–193

    PubMed  CAS  Google Scholar 

  143. Quaife CJ, Pinkert CA, Ornitz DM, Palmiter RD, Brinster RL (1987) Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48:1023–1034

    PubMed  CAS  Google Scholar 

  144. Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–609

    PubMed  CAS  Google Scholar 

  145. Hruban RH, Adsay NV, Albores-Saavedra J et al (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66:95–106

    PubMed  CAS  Google Scholar 

  146. Aguirre AJ, Bardeesy N, Sinha M et al (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    PubMed  CAS  Google Scholar 

  147. Bardeesy N, Aguirre AJ, Chu GC et al (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A 103:5947–5952

    PubMed  CAS  Google Scholar 

  148. Siveke JT, Einwachter H, Sipos B, Lubeseder-Martellato C, Kloppel G, Schmid RM (2007) Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12:266–279

    PubMed  CAS  Google Scholar 

  149. Izeradjene K, Combs C, Best M et al (2007) Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11:229–243

    PubMed  CAS  Google Scholar 

  150. Harsha HC, Kandasamy K, Ranganathan P et al (2009) A compendium of potential biomarkers of pancreatic cancer. PLoS Med 6:e1000046

    PubMed  CAS  Google Scholar 

  151. Faca VM, Song KS, Wang H et al (2008) A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 5:e123

    PubMed  Google Scholar 

  152. Funahashi H, Satake M, Dawson D et al (2007) Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 67:7068–7071

    PubMed  CAS  Google Scholar 

  153. Fendrich V, Chen NM, Neef M, et al (2009) The Angiotensin-I-converting enzyme inhibitor enalapril and aspirin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer. Gut 59(5):630–637

    PubMed  Google Scholar 

  154. Brand RE, Lerch MM, Rubinstein WS et al (2007) Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 56:1460–1469

    PubMed  Google Scholar 

  155. Guerra C, Schuhmacher AJ, Canamero M et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    PubMed  CAS  Google Scholar 

  156. Habbe N, Shi G, Meguid RA et al (2008) Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci U S A 105:18913–18918

    PubMed  CAS  Google Scholar 

  157. Gidekel Friedlander SY, Chu GC, Snyder EL et al (2009) Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16:379–389

    PubMed  Google Scholar 

  158. Pawlik TM, Laheru D, Hruban RH et al (2008) Evaluating the impact of a single-day multidisciplinary clinic on the management of pancreatic cancer. Ann Surg Oncol 15:2081–2088

    PubMed  Google Scholar 

  159. Petersen GM, de Andrade M, Goggins M et al (2006) Pancreatic cancer genetic epidemiology consortium. Cancer Epidemiol Biomark Prev 15:704–710

    Google Scholar 

  160. Klein AP, Brune KA, Petersen GM et al (2004) Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 64:2634–2638

    PubMed  CAS  Google Scholar 

  161. Canto MI, Goggins M, Hruban RH et al (2006) Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 4:766–781, quiz 665

    PubMed  Google Scholar 

  162. Brune K, Abe T, Canto M et al (2006) Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol 30:1067–1076

    PubMed  Google Scholar 

  163. Allen PJ, Brennan MF (2007) The management of cystic lesions of the pancreas. Adv Surg 41:211–228

    PubMed  Google Scholar 

  164. Fasanella KE, McGrath K (2009) Cystic lesions and intraductal neoplasms of the pancreas. Best practice & research 23:35–48

    Google Scholar 

  165. Kiely JM, Nakeeb A, Komorowski RA, Wilson SD, Pitt HA (2003) Cystic pancreatic neoplasms: enucleate or resect? J Gastrointest Surg 7:890–897

    PubMed  Google Scholar 

  166. Winter JM, Cameron JL, Lillemoe KD et al (2006) Periampullary and pancreatic incidentaloma: a single institution’s experience with an increasingly common diagnosis. Ann Surg 243:673–680, discussion 80–83

    PubMed  Google Scholar 

  167. Fritz S, Warshaw AL, Thayer SP (2009) Management of mucin-producing cystic neoplasms of the pancreas. Oncologist 14:125–136

    PubMed  Google Scholar 

  168. Guarise A, Faccioli N, Ferrari M et al (2008) Evaluation of serial changes of pancreatic branch duct intraductal papillary mucinous neoplasms by follow-up with magnetic resonance imaging. Cancer Imaging 8:220–228

    PubMed  Google Scholar 

  169. Tada M, Kawabe T, Arizumi M et al (2006) Pancreatic cancer in patients with pancreatic cystic lesions: a prospective study in 197 patients. Clin Gastroenterol Hepatol 4:1265–1270

    PubMed  Google Scholar 

  170. Hong SM, Kelly D, Griffith M et al (2008) Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas. Mod Pathol 21:1499–1507

    PubMed  CAS  Google Scholar 

  171. Riall TS, Stager VM, Nealon WH et al (2007) Incidence of additional primary cancers in patients with invasive intraductal papillary mucinous neoplasms and sporadic pancreatic adenocarcinomas. J Am Coll Surg 204:803–813, discussion 13–14

    PubMed  Google Scholar 

  172. Reid-Lombardo KM, Mathis KL, Wood CM, Harmsen WS, Sarr MG (2009). Frequency of extrapancreatic neoplasms in intraductal papillary mucinous neoplasm of the pancreas: implications for management. Ann Surg 251(1):64–69

    Google Scholar 

  173. Baumgaertner I, Corcos O, Couvelard A et al (2008) Prevalence of extrapancreatic cancers in patients with histologically proven intraductal papillary mucinous neoplasms of the pancreas: a case-control study. Am J Gastroenterol 103:2878–2882

    PubMed  Google Scholar 

  174. Yoon WJ, Ryu JK, Lee JK et al (2008) Extrapancreatic malignancies in patients with intraductal papillary mucinous neoplasm of the pancreas: prevalence, associated factors, and comparison with patients with other pancreatic cystic neoplasms. Ann Surg Oncol 15:3193–3198

    PubMed  Google Scholar 

  175. Choi MG, Kim SW, Han SS, Jang JY, Park YH (2006) High incidence of extrapancreatic neoplasms in patients with intraductal papillary mucinous neoplasms. Arch Surg 141:51–56, discussion 6

    PubMed  Google Scholar 

  176. Kamisawa T, Tu Y, Egawa N, Nakajima H, Tsuruta K, Okamoto A (2005) Malignancies associated with intraductal papillary mucinous neoplasm of the pancreas. World J Gastroenterol 11:5688–5690

    PubMed  Google Scholar 

  177. Eguchi H, Ishikawa O, Ohigashi H et al (2006) Patients with pancreatic intraductal papillary mucinous neoplasms are at high risk of colorectal cancer development. Surgery 139:749–754

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by R01CA113669, P50CA62924, P01CA134292, the Sol Goldman Pancreatic Cancer Research Center and the Michael Rolfe Foundation for Pancreatic Cancer Research. Hanno Matthaei is supported by a grant from the Mildred-Scheel-Stiftung, Deutsche Krebshilfe, Bonn, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Maitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matthaei, H., Maitra, A. (2011). Precursor Lesions of Pancreatic Cancer. In: Fitzgerald, R. (eds) Pre-Invasive Disease: Pathogenesis and Clinical Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6694-0_19

Download citation

Publish with us

Policies and ethics