Advertisement

Barrett’s Oesophagus

  • Rebecca Fitzgerald
Chapter

Abstract

Barrett’s oesophagus (or columnar lined epithelium of the oesophagus) is the precursor lesion for oesophageal adenocarcinoma which is a cancer with a very poor prognosis. The clinical accessibility of the Barrett’s segment and the opportunity for repeated, longitudinal sampling make it an ideal system in which to study the pathogenesis of metaplasia and the progression to cancer. From a clinical standpoint there has been much controversy over how to manage patients with this condition since it is often clinically silent, only a minority of patients will progress to cancer and until recently the treatment options have been limited and highly invasive. The two key clinical questions are therefore: how to identify patients with Barrett’s oesophagus who are at high risk for progression to adenocarcinoma and how to manage those at high risk in order to prevent cancer development. It is also possible that if one had a thorough understanding of the disease pathogenesis then maybe one could prevent individuals with duodeno-gastro-oesophageal reflux developing Barrett’s oesophagus in the first place. The explosion in endoscopic technology coupled with molecular biology tools at the –omics level mean that advances are being made which are having an impact on clinical practice although the field remains dogged by a lack of consensus in many areas.

Keywords

High Grade Dysplasia Copy Number Change Oesophageal Adenocarcinoma Normal Squamous Oesophagus Metaplastic Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Rebecca Fitzgerald is supported by a Medical Research Council programme Grant, as well as from the Cambridge Experimental Cancer Medicine Centre and the NIHR Cambridge Biomedical Research Centre.

References

  1. 1.
    Donaldson SL (2008) Annual report of the Chief Medical Officer: on the state of public health. London, Contract No.: Document Number 1Google Scholar
  2. 2.
    Pohl H, Sirovich B, Welch HG. (2005) Esophageal adenocarcinoma incidence: are we reaching the peak? Cancer Epidemicol Biomarkers Prev19(6):1468–70Google Scholar
  3. 3.
    Lepage C, Rachet B, Jooste V, Faivre J, Coleman MP (2008) Continuing rapid increase in esophageal adenocarcinoma in England and Wales. Am J Gastroenterol 103(11):2694–2699PubMedGoogle Scholar
  4. 4.
    Cheung TK, Wong BC, Lam SK (2008) Gastro-oesophageal reflux disease in Asia: birth of a ‘new’ disease? Drugs 68(4):399–406PubMedGoogle Scholar
  5. 5.
    Corley DA, Kubo A, Levin TR, Block G, Habel L, Rumore G et al (2009) Race, ethnicity, sex and temporal differences in Barrett’s oesophagus diagnosis: a large community-based study, 1994–2006. Gut 58(2):182–188PubMedGoogle Scholar
  6. 6.
    Wang KK, Sampliner RE (2008) Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol 103(3):788–797PubMedGoogle Scholar
  7. 7.
    Watson A, Heading RC, Shepherd NA (2005) Guidelines for the diagnosis and management of Barrett’s columnar-lined oesophagus. British Society of Gastroenterology, London, Contract No.: Document Number 1Google Scholar
  8. 8.
    Chandrasoma PT, Der R, Dalton P, Kobayashi G, Ma Y, Peters J et al (2001) Distribution and significance of epithelial types in columnar-lined esophagus. Am J Surg Pathol 25(9):1188–1193PubMedGoogle Scholar
  9. 9.
    Hahn HP, Blount PL, Ayub K, Das KM, Souza R, Spechler S et al (2009) Intestinal differentiation in metaplastic, nongoblet columnar epithelium in the esophagus. Am J Surg Pathol 33(7):1006–1015PubMedGoogle Scholar
  10. 10.
    Wani S, Puli SR, Shaheen NJ, Westhoff B, Slehria S, Bansal A et al (2009) Esophageal adenocarcinoma in Barrett’s esophagus after endoscopic ablative therapy: a meta-analysis and systematic review. Am J Gastroenterol 104(2):502–513PubMedGoogle Scholar
  11. 11.
    Montgomery RK, Mulberg AE, Grand RJ (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 16(3):702–731Google Scholar
  12. 12.
    Yu WY, Slack JM, Tosh D (2005) Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol 284:157–170PubMedGoogle Scholar
  13. 13.
    Seery JP, Watt FM (2000) Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol 10(22):1447–1450PubMedGoogle Scholar
  14. 14.
    Seery JP (2002) Stem cells of the oesophageal epithelium. J Cell Sci 115(Pt 9):1783–1789PubMedGoogle Scholar
  15. 15.
    Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, Poller D et al (2008) Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut 57(8):1041–1048PubMedGoogle Scholar
  16. 16.
    Coad RA, Woodman AC, Warner PJ, Barr H, Wright NA, Shepherd NA (2005) On the histogenesis of Barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J Pathol 206:388–394PubMedGoogle Scholar
  17. 17.
    Guillem PG (2005) How to make a Barrett esophagus: pathophysiology of columnar metaplasia of the esophagus. Dig Dis Sci 50(3):415–424PubMedGoogle Scholar
  18. 18.
    Ahnen DJ, Poulsom R, Stamp GW, Elia G, Pike C, Jeffery R, Longcroft J, Rio MC, Chambon P, Wright NA (1994) The ulceration-associated cell lineage (UACL) reiterates the Brunner’s gland differentiation programme but acquires the proliferative organization of the gastric gland. J Pathol 173:317–326PubMedGoogle Scholar
  19. 19.
    Abdulnour-Nakhoul S, Nakhoul NL, Wheeler SA, Haque S, Wang P, Brown K et al (2007) Characterization of esophageal submucosal glands in pig tissue and cultures. Dig Dis Sci 52(11):3054–3065PubMedGoogle Scholar
  20. 20.
    Paulson TG, Xu L, Sanchez C, Blount PL, Ayub K, Odze RD et al (2006) Neosquamous epithelium does not typically arise from Barrett’s epithelium. Clin Cancer Res 12(6):1701–1706PubMedGoogle Scholar
  21. 21.
    Chang CL, Lao-Sirieix P, Save V, De La Cueva Mendez G, Laskey R, Fitzgerald RC (2007) Retinoic acid-induced glandular differentiation of the oesophagus. Gut 56(7):906–917PubMedGoogle Scholar
  22. 22.
    Vaezi M, Richter J (1996) Role of acid and duodenogastroesophageal reflux in gastro-oesophageal reflux disease. Gastroenterology 111:1192PubMedGoogle Scholar
  23. 23.
    Flameling RD, Numans ME, Ter Linde J, de Wit NJ, Siersema PD (2010) Different characteristics of patients with gastro-oesophageal reflux disease on their path through healthcare: a population follow-up study. Eur J Gastroenterol Hepatol 22(5):578–582PubMedGoogle Scholar
  24. 24.
    Falkenback D, Oberg S, Johnsson F, Johansson J (2009) Is the course of gastroesophageal reflux disease progressive? A 21-year follow-up. Scand J Gastroenterol 44(11):1277–1287PubMedGoogle Scholar
  25. 25.
    Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T et al (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 105(11): 4283–4288PubMedGoogle Scholar
  26. 26.
    Chao DL, Maley CC, Wu X, Farrow DC, Galipeau PC, Sanchez CA et al (2006) Mutagen sensitivity and neoplastic progression in patients with Barrett’s esophagus: a prospective analysis. Cancer Epidemiol Biomarkers Prev 15(10):1935–1940PubMedGoogle Scholar
  27. 27.
    Winters C, Spurling T, Chobanian S, Curtis D, Esposito R, Hacker JF et al (1987) Barrett’s esophagus: a prevalent occult complication of gastro-oesophageal reflux disease. Gastroenterology 92:118–124PubMedGoogle Scholar
  28. 28.
    Chiu PW, Ayazi S, Hagen JA, Lipham JC, Zehetner J, Abate E et al (2009) Esophageal pH exposure and epithelial cell differentiation. Dis Esophagus 22(7):596–599PubMedGoogle Scholar
  29. 29.
    Lagergren J, Bergstrom R, Lindgren A, Nyren O (1999) Symptomatic gastroesophageal reflux as a risk factor for oesophageal adenocarcinoma. N Engl J Med 340(11):825–832PubMedGoogle Scholar
  30. 30.
    Cameron A, Kamath P, Carpenter H (1997) Prevalence of Barrett’s esophagus and intestinal metaplasia at the esophagogastric junction. Gastroenterology 112:A82Google Scholar
  31. 31.
    Jacobson BC, Chan AT, Giovannucci EL, Fuchs CS (2009) Body mass index and Barrett’s oesophagus in women. Gut 58(11):1460–1466PubMedGoogle Scholar
  32. 32.
    Mulholland HG, Cantwell MM, Anderson LA, Johnston BT, Watson RG, Murphy SJ et al (2009) Glycemic index, carbohydrate and fiber intakes and risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Cancer Causes Control 20(3):279–288PubMedGoogle Scholar
  33. 33.
    El-Serag HB, Lagergren J (2009) Alcohol drinking and the risk of Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology 136(4):1155–1157PubMedGoogle Scholar
  34. 34.
    Anderson LA, Cantwell MM, Watson RG, Johnston BT, Murphy SJ, Ferguson HR et al (2009) The association between alcohol and reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Gastroenterology 136(3):799–805PubMedGoogle Scholar
  35. 35.
    Kubo A, Levin TR, Block G, Rumore GJ, Quesenberry CP Jr, Buffler P et al (2009) Alcohol types and sociodemographic characteristics as risk factors for Barrett’s esophagus. Gastroenterology 136(3):806–815PubMedGoogle Scholar
  36. 36.
    Derakhshan MH, Liptrot S, Paul J, Brown IL, Morrison D, McColl KE (2009) Oesophageal and gastric intestinal-type adenocarcinomas show the same male predominance due to a 17 year delayed development in females. Gut 58(1):16–23PubMedGoogle Scholar
  37. 37.
    Kubo A, Levin TR, Block G, Rumore GJ, Quesenberry CP Jr, Buffler P et al (2008) Dietary patterns and the risk of Barrett’s esophagus. Am J Epidemiol 167(7):839–846PubMedGoogle Scholar
  38. 38.
    Iijima K, Henry E, Moriya A, Wirz A, Kelman AW, McColl KE (2002) Dietary nitrate generates potentially mutagenic concentrations of nitric oxide at the gastroesophageal junction. Gastroenterology 122(5):1248–1257PubMedGoogle Scholar
  39. 39.
    Winter JW, Paterson S, Scobie G, Wirz A, Preston T, McColl KE (2007) N-nitrosamine generation from ingested nitrate via nitric oxide in subjects with and without gastroesophageal reflux. Gastroenterology 133(1):164–174PubMedGoogle Scholar
  40. 40.
    Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y et al (2009) The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136(5):1689–1700PubMedGoogle Scholar
  41. 41.
    Wong NA, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, Maynard N, Marshall R, Bodmer WF (2005) CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci U S A 102:7565–7570PubMedGoogle Scholar
  42. 42.
    Kazumori H, Ishihara S, Kinoshita Y (2009) Roles of caudal-related homeobox gene Cdx1 in oesophageal epithelial cells in Barrett’s epithelium development. Gut 58(5):620–628PubMedGoogle Scholar
  43. 43.
    Pera M, Pera M, de Bolos C, Brito MJ, Palacin A, Grande L et al (2007) Duodenal-content reflux into the esophagus leads to expression of Cdx2 and Muc2 in areas of squamous epithelium in rats. J Gastrointest Surg 11(7):869–874PubMedGoogle Scholar
  44. 44.
    Hu Y, Williams VA, Gellersen O, Jones C, Watson TJ, Peters JH (2007) The pathogenesis of Barrett’s esophagus: secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophageal cells. J Gastrointest Surg 11(7):827–834PubMedGoogle Scholar
  45. 45.
    Beck F (2004) The role of Cdx genes in the mammalian gut. Gut 53(10):1394–1396PubMedGoogle Scholar
  46. 46.
    Souza RF, Krishnan K, Spechler SJ (2008) Acid, bile, and CDX: the ABCs of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol 295(2):G211–G218PubMedGoogle Scholar
  47. 47.
    Kazumori H, Ishihara S, Rumi MA, Kadowaki Y, Kinoshita Y (2006) Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut 55:16–25PubMedGoogle Scholar
  48. 48.
    Liu T, Zhang X, So CK, Wang S, Wang P, Yan L et al (2007) Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis 28(2):488–496PubMedGoogle Scholar
  49. 49.
    Morrow DJ, Avissar NE, Toia L, Redmond EM, Watson TJ, Jones C et al (2009) Pathogenesis of Barrett’s esophagus: bile acids inhibit the Notch signaling pathway with induction of CDX2 gene expression in human esophageal cells. Surgery 146(4):714–721, discussion 21–22PubMedGoogle Scholar
  50. 50.
    Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455(7213):627–632PubMedGoogle Scholar
  51. 51.
    Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F, DeMars CJ et al (2007) Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 132(7):2412–2421PubMedGoogle Scholar
  52. 52.
    Avissar NE, Toia L, Hu Y, Watson TJ, Jones C, Raymond DP et al (2009) Bile acid alone, or in combination with acid, induces CDX2 expression through activation of the epidermal growth factor receptor (EGFR). J Gastrointest Surg 13(2):212–222PubMedGoogle Scholar
  53. 53.
    Clemons NJ, McColl KE, Fitzgerald RC (2007) Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus carcinogenesis via distinct mechanisms. Gastroenterology 133(4):1198–1209PubMedGoogle Scholar
  54. 54.
    Jenkins GJ, D’Souza FR, Suzen SH, Eltahir ZS, James SA, Parry JM et al (2007) Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: the potential role of anti-oxidants in Barrett’s oesophagus. Carcinogenesis 28(1):136–142PubMedGoogle Scholar
  55. 55.
    Jenkins GJ, Cronin J, Alhamdani A, Rawat N, D’Souza F, Thomas T et al (2008) The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappaB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis 23(5):399–405PubMedGoogle Scholar
  56. 56.
    Fitzgerald RC, Omary MB, Triadafilopoulos G (1996) Dynamic effects of acid on Barrett’s esophagus. An ex vivo proliferation and differentiation model. J Clin Invest 98(9): 2120–2128PubMedGoogle Scholar
  57. 57.
    Fitzgerald R, Omary M, Triadafilopoulos G (1998) Altered sodium–hydrogen exchange activity is a mechanism for acid-induced hyperproliferation in Barrett’s esophagus. Am J Physiol 275: G47–G55PubMedGoogle Scholar
  58. 58.
    Kaur BS, Triadafilopoulos G (2002) Acid- and bile-induced PGE(2) release and hyperproliferation in Barrett’s esophagus are COX-2 and PKC-epsilon dependent. Am J Physiol Gastrointest Liver Physiol 283(2):G327–G334PubMedGoogle Scholar
  59. 59.
    Souza RF, Shewmake K, Pearson S, Sarosi GA Jr, Feagins LA, Ramirez RD et al (2004) Acid increases proliferation via ERK and p38 MAPK-mediated increases in cyclooxygenase-2 in Barrett’s adenocarcinoma cells. Am J Physiol Gastrointest Liver Physiol 287(4):G743–G748PubMedGoogle Scholar
  60. 60.
    Hormi-Carver K, Zhang X, Zhang HY, Whitehead RH, Terada LS, Spechler SJ et al (2009) Unlike esophageal squamous cells, Barrett’s epithelial cells resist apoptosis by activating the nuclear factor-kappaB pathway. Cancer Res 69(2):672–677PubMedGoogle Scholar
  61. 61.
    Konturek PC, Nikiforuk A, Kania J, Raithel M, Hahn EG, Muhldorfer S (2004) Activation of NFkappaB represents the central event in the neoplastic progression associated with Barrett’s esophagus: a possible link to the inflammation and overexpression of COX-2, PPARgamma and growth factors. Dig Dis Sci 49(7–8):1075–1083PubMedGoogle Scholar
  62. 62.
    Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJ (2002) Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut 50(4):451–459PubMedGoogle Scholar
  63. 63.
    Abdalla SI, Lao-Sirieix P, Novelli MR, Lovat LB, Sanderson IR, Fitzgerald RC (2004) Gastrin-induced cyclooxygenase-2 expression in Barrett’s carcinogenesis. Clin Cancer Res 10(14):4784–4792PubMedGoogle Scholar
  64. 64.
    Shirvani V, Ouatu-Luscar R, Kaur B, Omary M, Traidafilopoulos G (2000) Cyclo-oxygenase 2 expression in Barrett’s esophagus and adenocarcinoma. ex vivo induction by bile salts and acid exposure. Gastroenterology 118(3):487–496PubMedGoogle Scholar
  65. 65.
    Capello A, Moons LM, Van de Winkel A, Siersema PD, van Dekken H, Kuipers EJ et al (2008) Bile acid-stimulated expression of the farnesoid X receptor enhances the immune response in Barrett esophagus. Am J Gastroenterol 103(6):1510–1516PubMedGoogle Scholar
  66. 66.
    Yen CJ, Izzo JG, Lee DF, Guha S, Wei Y, Wu TT et al (2008) Bile acid exposure up-regulates tuberous sclerosis complex 1/mammalian target of rapamycin pathway in Barrett’s-associated esophageal adenocarcinoma. Cancer Res 68(8):2632–2640PubMedGoogle Scholar
  67. 67.
    Grivennikov S, Karin M (2008) Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13(1):7–9PubMedGoogle Scholar
  68. 68.
    Watanabe S, Hojo M, Nagahara A (2007) Metabolic syndrome and gastrointestinal diseases. J Gastroenterol 42(4):267–274PubMedGoogle Scholar
  69. 69.
    Ryan AM, Healy LA, Power DG, Byrne M, Murphy S, Byrne PJ et al (2008) Barrett esophagus: prevalence of central adiposity, metabolic syndrome, and a proinflammatory state. Ann Surg 247(6):909–915PubMedGoogle Scholar
  70. 70.
    Han ES, Muller FL, Perez VI, Qi W, Liang H, Xi L et al (2008) The in vivo gene expression signature of oxidative stress. Physiol Genomics 34(1):112–126PubMedGoogle Scholar
  71. 71.
    Peng DF, Razvi M, Chen H, Washington K, Roessner A, Schneider-Stock R et al (2009) DNA hypermethylation regulates the expression of members of the Mu-class glutathione S-transferases and glutathione peroxidases in Barrett’s adenocarcinoma. Gut 58(1):5–15PubMedGoogle Scholar
  72. 72.
    Boult J, Roberts K, Brookes MJ, Hughes S, Bury JP, Cross SS et al (2008) Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res 14(2):379–387PubMedGoogle Scholar
  73. 73.
    Corley DA, Kubo A, Levin TR, Block G, Habel L, Rumore GJ et al (2008) Hemochromatosis gene status as a risk factor for Barrett’s esophagus. Dig Dis Sci 53(12):3095–3102PubMedGoogle Scholar
  74. 74.
    Fitzgerald RC (2006) Molecular basis of Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 55(12):1810–1820PubMedGoogle Scholar
  75. 75.
    Wild CP, Hardie LJ (2003) Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer 3(9):676–684PubMedGoogle Scholar
  76. 76.
    Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Reid BJ (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 64(10):3414–3427PubMedGoogle Scholar
  77. 77.
    Barrett MT, Sanchez CA, Neshat K, Galipeau PC, Reid BJ (1996) Allelic loss of 9p21 and mutations of the CDKN2/p16 gene develop as early events in neoplastic progression in Barrett’s esophagus. Gastroenterology 110:A489Google Scholar
  78. 78.
    Barrett MT, Sanchez CA, Prevo LJ, Wong DJ, Galipeau PC, Paulson TG et al (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22(1):106–109PubMedGoogle Scholar
  79. 79.
    Hardie LJ, Darnton SJ, Wallis YL, Chauhan A, Hainaut P, Wild CP et al (2005) p16 Expression in Barrett’s esophagus and esophageal adenocarcinoma: association with genetic and epigenetic alterations. Cancer Lett 217(2):221–230PubMedGoogle Scholar
  80. 80.
    Chao DL, Sanchez CA, Galipeau PC, Blount PL, Paulson TG, Cowan DS et al (2008) Cell proliferation, cell cycle abnormalities, and cancer outcome in patients with Barrett’s esophagus: a long-term prospective study. Clin Cancer Res 14(21):6988–6995PubMedGoogle Scholar
  81. 81.
    Wong DJ, Paulson TG, Prevo LJ, Galipeau PC, Longton G, Blount PL et al (2001) p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 61(22):8284–8289PubMedGoogle Scholar
  82. 82.
    Lai LA, Paulson TG, Li X, Sanchez CA, Maley C, Odze RD et al (2007) Increasing genomic instability during premalignant neoplastic progression revealed through high resolution array-CGH. Genes Chromosomes Cancer 46(6):532–542PubMedGoogle Scholar
  83. 83.
    Huang Y, Peters CJ, Fitzgerald RC, Gjerset RA (2009) Progressive silencing of p14ARF in oesophageal adenocarcinoma. J Cell Mol Med 13(2):398–409PubMedGoogle Scholar
  84. 84.
    Baker SJ, Preisinger AC, Jessup JM, Paraskeva C, Markowitz S, Willson JK et al (1990) p53 Gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res 50(23):7717–7722PubMedGoogle Scholar
  85. 85.
    Reid BJ, Prevo LJ, Galipeau PC, Sanchez CA, Longton G, Levine DS et al (2001) Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol 96(10):2839–2848PubMedGoogle Scholar
  86. 86.
    Murray L, Sedo A, Scott M, McManus D, Sloan JM, Hardie LJ, Forman D, Wild CP (2006) TP53 and progression from Barrett’s metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut 55(10):1390–1397PubMedGoogle Scholar
  87. 87.
    Hong MK, Laskin WB, Herman BE, Johnston MH, Vargo JJ, Steinberg SM et al (1995) Expansion of the Ki-67 proliferative compartment correlates with degree of dysplasia in Barrett’s esophagus. Cancer 72(2):423–429Google Scholar
  88. 88.
    Sirieix P, O’Donovan M, Brown J, Save V, Coleman N, RC F (2003) Surface expression of mini-chromosome maintenance proteins provides a novel method for detecting patients at risk for developing adeocarcinoma in Barrett’s oesophagus. Clin Cancer Res 9(7):2560–2566PubMedGoogle Scholar
  89. 89.
    Williams GH, Swinn R, Prevost AT, De Clive-Lowe P, Halsall I, Going JJ et al (2004) Diagnosis of oesophageal cancer by detection of minichromosome maintenance 5 protein in gastric aspirates. Br J Cancer 91(4):714–719PubMedGoogle Scholar
  90. 90.
    Galipeau P, Cowan D, Sanchez C, Barrett M, Emond M, Levine D et al (1996) 17p (p53) Allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci U S A 93:7081–7084PubMedGoogle Scholar
  91. 91.
    Bani-Hani K, Martin IG, Hardie LJ, Mapstone N, Briggs JA, Forman D et al (2000) Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst 92(16):1316–1321PubMedGoogle Scholar
  92. 92.
    Lao-Sirieix P, Brais R, Lovat L, Coleman N, Fitzgerald RC (2004) Cell cycle phase abnormalities do not account for disordered proliferation in Barrett’s carcinogenesis. Neoplasia 6:751–760PubMedGoogle Scholar
  93. 93.
    Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Blount PL et al (2004) The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res 64(20):7629–7633PubMedGoogle Scholar
  94. 94.
    Vaughan TL, Dong LM, Blount PL, Ayub K, Odze RD, Sanchez CA, Rabinovitch PS, Reid BJ (2005) Non-steroidal anti-inflammatory drugs and risk of neoplastic progression in Barrett’s oesophagus: a prospective study. Lancet Oncol 6:945–952PubMedGoogle Scholar
  95. 95.
    Galipeau PC, Prevo LJ, Sanchez CA, Longton GM, Reid BJ (1999) Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst 91(24):2087–2095PubMedGoogle Scholar
  96. 96.
    Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X, Sanchez CA et al (2006) Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 38(4):468–473PubMedGoogle Scholar
  97. 97.
    Muzeau F, Flejou JF, Belghiti J, Thomas G, Hamelin R (1997) Infrequent microsatellite instability in oesophageal cancers. Br J Cancer 75(9):1336–1339PubMedGoogle Scholar
  98. 98.
    Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE et al (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322(5902):703–709PubMedGoogle Scholar
  99. 99.
    Cestari R, Villanacci V, Rossi E, Della Casa D, Missale G, Conio M et al (2007) Fluorescence in situ hybridization to evaluate dysplasia in Barrett’s esophagus: a pilot study. Cancer Lett 251(2):278–287PubMedGoogle Scholar
  100. 100.
    Chaves P, Crespo M, Ribeiro C, Laranjeira C, Pereira AD, Suspiro A et al (2007) Chromosomal analysis of Barrett’s cells: demonstration of instability and detection of the metaplastic lineage involved. Mod Pathol 20(7):788–796PubMedGoogle Scholar
  101. 101.
    Rabinovitch PS, Longton G, Blount PL, Levine DS, Reid BJ (2001) Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am J Gastroenterol 96(11):3071–3083PubMedGoogle Scholar
  102. 102.
    Paulson TG, Maley CC, Li X, Li H, Sanchez CA, Chao DL et al (2009) Chromosomal instability and copy number alterations in Barrett’s esophagus and esophageal adenocarcinoma. Clin Cancer Res 15(10):3305–3314PubMedGoogle Scholar
  103. 103.
    Li X, Galipeau PC, Sanchez CA, Blount PL, Maley CC, Arnaudo J et al (2008) Single nucleotide polymorphism-based genome-wide chromosome copy change, loss of heterozygosity, and aneuploidy in Barrett’s esophagus neoplastic progression. Cancer Prev Res (Phila Pa) 1(6):413–423Google Scholar
  104. 104.
    Wang J, Qin R, Ma Y, Wu H, Peters H, Tyska M et al (2009) Differential gene expression in normal esophagus and Barrett’s esophagus. J Gastroenterol 44(9):897–911PubMedGoogle Scholar
  105. 105.
    Selaru FM, Zou T, Xu Y, Shustova V, Yin J, Mori Y et al (2002) Global gene expression profiling in Barrett’s esophagus and esophageal cancer: a comparative analysis using cDNA microarrays. Oncogene 21(3):475–478PubMedGoogle Scholar
  106. 106.
    Hourihan RN, O’Sullivan GC, Morgan JG (2003) Transcriptional gene expression profiles of oesophageal adenocarcinoma and normal oesophageal tissues. Anticancer Res 23(1A):161–165PubMedGoogle Scholar
  107. 107.
    Greenawalt DM, Duong C, Smyth GK, Ciavarella ML, Thompson NJ, Tiang T et al (2007) Gene expression profiling of esophageal cancer: comparative analysis of Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma. Int J Cancer 120(9):1914–1921PubMedGoogle Scholar
  108. 108.
    Xu Y, Selaru FM, Yin J, Zou TT, Shustova V, Mori Y et al (2002) Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett’s esophagus and esophageal cancer. Cancer Res 62(12):3493–3497PubMedGoogle Scholar
  109. 109.
    Smith E, De Young NJ, Pavey SJ, Hayward NK, Nancarrow DJ, Whiteman DC et al (2008) Similarity of aberrant DNA methylation in Barrett’s esophagus and esophageal adenocarcinoma. Mol Cancer 7:75PubMedGoogle Scholar
  110. 110.
    Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y et al (2005) Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene 24(25):4138–4148PubMedGoogle Scholar
  111. 111.
    Jin Z, Mori Y, Yang J, Sato F, Ito T, Cheng Y et al (2007) Hypermethylation of the nel-like 1 gene is a common and early event and is associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene 26(43):6332–6340PubMedGoogle Scholar
  112. 112.
    Jin Z, Mori Y, Hamilton JP, Olaru A, Sato F, Yang J et al (2008) Hypermethylation of the somatostatin promoter is a common, early event in human esophageal carcinogenesis. Cancer 112(1):43–49PubMedGoogle Scholar
  113. 113.
    Maru DM, Singh RR, Hannah C, Albarracin CT, Li YX, Abraham R et al (2009) MicroRNA-196a is a potential marker of progression during Barrett’s metaplasia–dysplasia–invasive adenocarcinoma sequence in esophagus. Am J Pathol 174(5):1940–1948PubMedGoogle Scholar
  114. 114.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269PubMedGoogle Scholar
  115. 115.
    El-Serag HB, Nurgalieva ZZ, Mistretta TA, Finegold MJ, Souza R, Hilsenbeck S et al (2009) Gene expression in Barrett’s esophagus: laser capture versus whole tissue. Scand J Gastroenterol 44(7):787–795PubMedGoogle Scholar
  116. 116.
    Sabo E, Meitner PA, Tavares R, Corless CL, Lauwers GY, Moss SF et al (2008) Expression analysis of Barrett’s esophagus-associated high-grade dysplasia in laser capture microdissected archival tissue. Clin Cancer Res 14(20):6440–6448PubMedGoogle Scholar
  117. 117.
    Marx J (2008) Cancer biology. All in the stroma: cancer’s Cosa Nostra. Science 320(5872): 38–41PubMedGoogle Scholar
  118. 118.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337PubMedGoogle Scholar
  119. 119.
    Mueller MM, Fusenig NE (2004) Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4(11):839–849PubMedGoogle Scholar
  120. 120.
    Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851PubMedGoogle Scholar
  121. 121.
    Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW (2006) Gene expression profiling reveals stromal genes expressed in common between Barrett’s esophagus and adenocarcinoma. Gastroenterology 131(3):925–933PubMedGoogle Scholar
  122. 122.
    Saadi A, Shannon N, Lao-Sirieix P, O’Dononvan M, Walker E, Clemons N et al (2010) Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. Proc Natl Acad Sci U S A 107(5): 2177–2182PubMedGoogle Scholar
  123. 123.
    Onwuegbusi BA, Aitchison A, Chin SF, Kranjac T, Mills I, Huang Y et al (2006) Impaired transforming growth factor beta signalling in Barrett’s carcinogenesis due to frequent SMAD4 inactivation. Gut 55(6):764–774PubMedGoogle Scholar
  124. 124.
    Onwuegbusi BA, Rees JR, Lao-Sirieix P, Fitzgerald RC (2007) Selective loss of TGFbeta Smad-dependent signalling prevents cell cycle arrest and promotes invasion in oesophageal adenocarcinoma cell lines. PLoS One 2(1):e177PubMedGoogle Scholar
  125. 125.
    Mantovani A (2009) Cancer: inflaming metastasis. Nature 457(7225):36–37PubMedGoogle Scholar
  126. 126.
    Peng D, Sheta EA, Powell SM, Moskaluk CA, Washington K, Goldknopf IL et al (2008) Alterations in Barrett’s-related adenocarcinomas: a proteomic approach. Int J Cancer 122(6):1303–1310PubMedGoogle Scholar
  127. 127.
    Langer R, Ott K, Specht K, Becker K, Lordick F, Burian M et al (2008) Protein expression profiling in esophageal adenocarcinoma patients indicates association of heat-shock protein 27 expression and chemotherapy response. Clin Cancer Res 14(24):8279–8287PubMedGoogle Scholar
  128. 128.
    Cameron A, Zinsmeister A, Ballard D, Carney J (1990) Prevalence of columnar-lined (Barrett’s) esophagus. Comparison of population-based clinical and autopsy findings. Gatsroenterology 99:1918–1922Google Scholar
  129. 129.
    Shaheen NJ, Sharma P, Overholt BF, Wolfsen HC, Sampliner RE, Wang KK et al (2009) Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med 360(22): 2277–2288PubMedGoogle Scholar
  130. 130.
    Pouw RE, Wirths K, Eisendrath P, Sondermeijer CM, Kate FJ, Fockens P et al (2010) Efficacy of radiofrequency ablation combined with endoscopic resection for Barrett’s esophagus with early neoplasia. Clin Gastroenterol Hepatol 8(1):23–29PubMedGoogle Scholar
  131. 131.
    Das D, Chilton AP, Jankowski JA (2009) Chemoprevention of oesophageal cancer and the AspECT trial. Recent Results Cancer Res 181:161–169PubMedGoogle Scholar
  132. 132.
    Medical Research Council Oesophageal Cancer Working Group (2002) Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet 359(9319):1727–1733Google Scholar
  133. 133.
    Jobe BA, Hunter JG, Chang EY, Kim CY, Eisen GM, Robinson JD et al (2006) Office-based unsedated small-caliber endoscopy is equivalent to conventional sedated endoscopy in screening and surveillance for Barrett’s esophagus: a randomized and blinded comparison. Am J Gastroenterol 101(12):2693–2703PubMedGoogle Scholar
  134. 134.
    Bhardwaj A, Hollenbeak CS, Pooran N, Mathew A (2009) A meta-analysis of the diagnostic accuracy of esophageal capsule endoscopy for Barrett’s esophagus in patients with gastroesophageal reflux disease. Am J Gastroenterol 104(6):1533–1539PubMedGoogle Scholar
  135. 135.
    Ramirez FC, Akins R, Shaukat M (2008) Screening of Barrett’s esophagus with string-capsule endoscopy: a prospective blinded study of 100 consecutive patients using histology as the criterion standard. Gastrointest Endosc 68(1):25–31PubMedGoogle Scholar
  136. 136.
    Lao-Sirieix P, Boussioutas A, Kadri SR, O’Donovan M, Debiram I, Das M, Harihar L, Fitzgerald RC (2009) Non-endoscopic screening biomarkers for Barrett’s oesophagus: from microarray analysis to the clinic. Gut 58:1451–1459PubMedGoogle Scholar
  137. 137.
    Lao-Sirieix P, Rous B, O’Donovan M, Hardwick RH, Debiram I, Fitzgerald RC (2007) Non-endoscopic immunocytological screening test for Barrett’s oesophagus. Gut 56(7): 1033–1034PubMedGoogle Scholar
  138. 138.
    Sharma P, Dent J, Armstrong D, Bergman JJ, Gossner L, Hoshihara Y et al (2006) The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology 131(5):1392–1399PubMedGoogle Scholar
  139. 139.
    Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061PubMedGoogle Scholar
  140. 140.
    Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD et al (2007) NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med 4(2):e67PubMedGoogle Scholar
  141. 141.
    Rygiel AM, Milano F, Ten Kate FJ, de Groot JG, Peppelenbosch MP, Bergman JJ et al (2008) Assessment of chromosomal gains as compared to DNA content changes is more useful to detect dysplasia in Barrett’s esophagus brush cytology specimens. Genes Chromosomes Cancer 47(5):396–404PubMedGoogle Scholar
  142. 142.
    Borovicka J, Schonegg R, Hell M, Kradolfer D, Bauerfeind P, Dorta G et al (2009) Is there an advantage to be gained from adding digital image cytometry of brush cytology to a standard biopsy protocol in patients with Barrett’s esophagus? Endoscopy 41(5):409–414PubMedGoogle Scholar
  143. 143.
    Lin X, Finkelstein SD, Zhu B, Ujevich BJ, Silverman JF (2009) Loss of heterozygosities in Barrett esophagus, dysplasia, and adenocarcinoma detected by esophageal brushing cytology and gastroesophageal biopsy. Cancer Cytopathol 117(1):57–66Google Scholar
  144. 144.
    Wongsurawat VJ, Finley JC, Galipeau PC, Sanchez CA, Maley CC, Li X et al (2006) Genetic mechanisms of TP53 loss of heterozygosity in Barrett’s esophagus: implications for biomarker validation. Cancer Epidemiol Biomarkers Prev 15(3):509–516PubMedGoogle Scholar
  145. 145.
    Sato F, Jin Z, Schulmann K, Wang J, Greenwald BD, Ito T et al (2008) Three-tiered risk stratification model to predict progression in Barrett’s esophagus using epigenetic and clinical features. PLoS One 3(4):e1890PubMedGoogle Scholar
  146. 146.
    Hsiung PL, Hardy J, Friedland S, Soetikno R, Du CB, Wu AP et al (2008) Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 14(4):454–458PubMedGoogle Scholar
  147. 147.
    Prasad GA, Wang KK, Halling KC, Buttar NS, Wongkeesong LM, Zinsmeister AR et al (2008) Correlation of histology with biomarker status after photodynamic therapy in Barrett esophagus. Cancer 113(3):470–476PubMedGoogle Scholar
  148. 148.
    Prasad GA, Wang KK, Halling KC, Buttar NS, Wongkeesong LM, Zinsmeister AR et al (2008) Utility of biomarkers in prediction of response to ablative therapy in Barrett’s esophagus. Gastroenterology 135(2):370–379PubMedGoogle Scholar
  149. 149.
    Babar M, Ennis D, Abdel-Latif M, Byrne PJ, Ravi N, Reynolds JV (2010) Differential molecular changes in patients with asymptomatic long-segment Barrett’s esophagus treated by antireflux surgery or medical therapy. Am J Surg 199(2):137–143PubMedGoogle Scholar
  150. 150.
    Ouatu-Luscar R, Fitzgerald R, Triadafilopoulos G (1999) Differentiation and proliferation in Barrett’s esophagus and the effects of acid suppression. Gatsroenterology 117:327–335Google Scholar
  151. 151.
    El-Serag HB, Aguirre TV, Davis S, Kuebeler M, Bhattacharyya A, Sampliner RE (2004) Proton pump inhibitors are associated with reduced incidence of dysplasia in Barrett’s esophagus. Am J Gastroenterol 99(10):1877–1883PubMedGoogle Scholar
  152. 152.
    Hillman LC, Chiragakis L, Shadbolt B, Kaye GL, Clarke AC (2004) Proton-pump inhibitor therapy and the development of dysplasia in patients with Barrett’s oesophagus. Med J Aust 180:387–391PubMedGoogle Scholar
  153. 153.
    Gatenby PA, Ramus JR, Caygill CP, Charlett A, Winslet MC, Watson A (2009) Treatment modality and risk of development of dysplasia and adenocarcinoma in columnar-lined esophagus. Dis Esophagus 22(2):133–142PubMedGoogle Scholar
  154. 154.
    De Jonge PJ, Siersema PD, Van Breda SG, Van Zoest KP, Bac DJ, Leeuwenburgh I et al (2008) Proton pump inhibitor therapy in gastro-oesophageal reflux disease decreases the oesophageal immune response but does not reduce the formation of DNA adducts. Aliment Pharmacol Ther 28(1):127–136PubMedGoogle Scholar
  155. 155.
    Lagergren J, Viklund P (2007) Is esophageal adenocarcinoma occurring late after antireflux surgery due to persistent postoperative reflux? World J Surg 31(3):465–469PubMedGoogle Scholar
  156. 156.
    Corley DA, Kerlikowske K, Verma R, Buffler P (2003) Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. Gastroenterology 124(1):47–56PubMedGoogle Scholar
  157. 157.
    Heath EI, Canto MI, Piantadosi S, Montgomery E, Weinstein WM, Herman JG et al (2007) Secondary chemoprevention of Barrett’s esophagus with celecoxib: results of a randomized trial. J Natl Cancer Inst 99(7):545–557PubMedGoogle Scholar
  158. 158.
    Dong LM, Kristal AR, Peters U, Schenk JM, Sanchez CA, Rabinovitch PS et al (2008) Dietary supplement use and risk of neoplastic progression in esophageal adenocarcinoma: a prospective study. Nutr Cancer 60(1):39–48PubMedGoogle Scholar
  159. 159.
    Torrance CJ, Jackson PE, Montgomery E, Kinzler KW, Vogelstein B, Wissner A et al (2000) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6(9):1024–1028PubMedGoogle Scholar
  160. 160.
    Rossi E, Grisanti S, Villanacci V, Casa DD, Cengia P, Missale G et al (2009) Her-2 overexpression/amplification in Barrett’s esophagus predicts early transition from dysplasia to adenocarcinoma: a clinico-pathologic study. J Cell Mol Med 13(9B):3826–3833PubMedGoogle Scholar
  161. 161.
    Harris JC, Clarke PA, Awan A, Jankowski J, Watson SA (2004) An antiapoptotic role for gastrin and the gastrin/CCK-2 receptor in Barrett’s esophagus. Cancer Res. 15;64(6):1915PubMedGoogle Scholar
  162. 162.
    Kadri AR, Lao-Sirieix P, O’Dononvan M, Debiram I, Blazeby JM et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study BMJ 2010;341:4372PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.MRC Cancer Cell UnitHutchison-MRC Research CentreCambridgeUK

Personalised recommendations