Stem Cells in Intraepithelial Neoplasia



Tumours are thought to contain a subpopulation of self-renewing stem cells, the so-called cancer stem cells, which maintain the tumour. Moreover, tumours themselves are thought to arise from organ-specific stem cells. In epithelia, transformation of these cells leads to spread of a mutated stem cell clone through the epithelial sheet, leading to the development of a pre-invasive lesion. Barrett’s oesophagus is used as an example of the role of stem cells in the development of such a pre-invasive lesion. This is an intriguing condition where the stratified squamous epithelium of the lower oesophagus is replaced with a metaplastic epithelium, which usually shows goblet cell-containing crypts. A similar metaplasia occurs in the stomach in chronic atrophic gastritis. In both cases these epithelial fields can becomes genetically unstable and develop a considerable mutation burden, including mutations in important tumour-suppressor genes, setting in motion the so-called metaplasia/dysplasia/carcinoma sequence. There has long been argument about the nature of this metaplasia, but in the stomach we have shown that it represents a clonal proliferation and arises through a process of monoclonal conversion from gastric stem cells to the intestinal phenotype in individual gastric glands. We have further shown clonal spread of the metaplastic process within the epithelium, mediated through the mechanism of crypt fission. In Barrett’s mucosa however, we have shown that the mucosa is composed of numbers of discrete mutated clones, all of which may compete, providing a stimulus for clonal progression and thus malignant change. We also propose that the origin of these multiple clones is from stem cells in the ducts of the oesophageal glands found in the lower oesophagus.


Intestinal Metaplasia Stem Cell Niche Metaplastic Epithelium Oesophageal Gland Crypt Fission 



I thank Malcolm Alison, Stuart McDonald, Lydia Gutierrez-Gonzalez, Simon Leedham and Trevor Graham for much help with this work, and Cancer Research UK for funding.


  1. 1.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323PubMedCrossRefGoogle Scholar
  2. 2.
    Garcia S, Park HS, Novelli M, Wright NA (1999) Field cancerization, clonality, and epithelial stem cells: the spread of mutated clones in epithelial sheets. J Pathol 187:61–81PubMedCrossRefGoogle Scholar
  3. 3.
    Rosenberg DW, Giardina C, Tanaka T (2009) Mouse models for the study of colon carcinogenesis. Carcinogenesis 30(2):183–196PubMedCrossRefGoogle Scholar
  4. 4.
    Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920PubMedCrossRefGoogle Scholar
  5. 5.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedCrossRefGoogle Scholar
  6. 6.
    Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607PubMedCrossRefGoogle Scholar
  8. 8.
    Demidov ON, Timofeev O, Lwin HN, Kek C, Appella E, Bulavin DV (2007) Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell 1:180–190PubMedCrossRefGoogle Scholar
  9. 9.
    Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST (2008) Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res 68:3655–3661PubMedCrossRefGoogle Scholar
  10. 10.
    Maitland NJ, Collins AT (2008) Inflammation as the primary aetiological agent of human prostate cancer: a stem cell connection? J Cell Biochem 105:931–939PubMedCrossRefGoogle Scholar
  11. 11.
    Bisson I, Prowse DM (2009) WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 19:683–697PubMedCrossRefGoogle Scholar
  12. 12.
    Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT (2008) The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res 68:9703–9711PubMedCrossRefGoogle Scholar
  13. 13.
    Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500PubMedCrossRefGoogle Scholar
  14. 14.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, kConFab, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913PubMedCrossRefGoogle Scholar
  15. 15.
    Kristensen DM, Sonne SB, Ottesen AM, Perrett RM, Nielsen JE, Almstrup K, Skakkebaek NE, Leffers H, Meyts ER (2008) Origin of pluripotent germ cell tumours: the role of microenvironment during embryonic development. Mol Cell Endocrinol 288:111–118PubMedCrossRefGoogle Scholar
  16. 16.
    Alison MR, Islam S (2009) Attributes of adult stem cells. J Pathol 217:144–160PubMedCrossRefGoogle Scholar
  17. 17.
    Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, Budhu A, Zanetti KA, Chen Y, Qin LX, Tang ZY, Wang XW (2008) EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 68:1451–1461PubMedCrossRefGoogle Scholar
  18. 18.
    Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416PubMedCrossRefGoogle Scholar
  19. 19.
    Durnez A, Verslype C, Nevens F, Fevery J, Aerts R, Pirenne J, Lesaffre E, Libbrecht L, Desmet V, Roskams T (2006) The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology 49:138–151PubMedCrossRefGoogle Scholar
  20. 20.
    Alison MR, Islam S, Lim S (2009) Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 217:282–298PubMedCrossRefGoogle Scholar
  21. 21.
    Franklin WA, Gazdar AF, Haney J, Wictuba II, La Rossa FG, Kennedy T, Ricthey DM, Miller YE (1997) Widely dispersed p53 mutations in respiratory epithelium. J Clin Invest 100:2133–2137PubMedCrossRefGoogle Scholar
  22. 22.
    Riely GJ, Marks J, Pao W (2009) KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc 6:201–205PubMedCrossRefGoogle Scholar
  23. 23.
    Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248PubMedCrossRefGoogle Scholar
  24. 24.
    Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRefGoogle Scholar
  25. 25.
    Barth PJ, Koch S, Muller B, Unterstab F, von Wichert P, Moll R (2000) Proliferation and number of Clara cell 10-kDa protein (CC10)-reactive epithelial cells and basal cells in normal, hyperplastic and metaplastic bronchial mucosa. Virchows Arch 437:648–655PubMedCrossRefGoogle Scholar
  26. 26.
    Jankowski JA, Wright NA, Meltzer SJ et al (1999) Molecular evolution of the metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am J Pathol 154:965–973PubMedCrossRefGoogle Scholar
  27. 27.
    Montgomery E, Bronner MP, Goldblum JR, Greenson JK, Haber MM, Hart J, Lamps LW, Lauwers GY, Lazenby AJ, Lewin DN et al (2001) Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol 32:368–378PubMedCrossRefGoogle Scholar
  28. 28.
    Barrett MT, Sanchez CA, Prevo LJ et al (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22:106–109PubMedCrossRefGoogle Scholar
  29. 29.
    Wong DJ, Paulson TG, Prevo LJ et al (2001) p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 61:8284–8289PubMedGoogle Scholar
  30. 30.
    Galipeau PC, Prevo LJ, Sanchez CA et al (1999) Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst 91:2087–2095PubMedCrossRefGoogle Scholar
  31. 31.
    Maley CC, Galipeau PC, Finley JC et al (2006) Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 38:468–473PubMedCrossRefGoogle Scholar
  32. 32.
    Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, Poller D, Harrison R, Novelli MR, Jankowski JA, Wright NA (2008) Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut 57(8):1041–1048PubMedCrossRefGoogle Scholar
  33. 33.
    Maley CC, Galipeau PC, Li X et al (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 64:3414–3427PubMedCrossRefGoogle Scholar
  34. 34.
    Maley CC, Reid BJ (2005) Natural selection in neoplastic progression of Barrett’s esophagus. Semin Cancer Biol 15:474–483PubMedCrossRefGoogle Scholar
  35. 35.
    Jass JR, Filipe MI (1979) A variant of intestinal metaplasia associated with gastric carcinoma: a histochemical study. Histopathology 3:191–199PubMedCrossRefGoogle Scholar
  36. 36.
    Filipe MI, Barbatis C, Sandey A, MA J (1988) Expression of intestinal mucin antigens in the gastric epithelium and its relationship with malignancy. Hum Pathol 19:19–26PubMedCrossRefGoogle Scholar
  37. 37.
    Filipe MI, Potet F, Bogomoletz WV, Dawson PA, Fabiani B, Chauveinc P, Fenzy A, Gazzard B, Goldfain D, Zeegen R (1985) Incomplete sulphomucin-secreting intestinal metaplasia for gastric cancer. Preliminary data from a prospective study from three centres. Gut 26: 1319–1326PubMedCrossRefGoogle Scholar
  38. 38.
    Inada K, Nakanishi H, Fujimitsu Y, Shimizu N, Ichinose M, Miki K, Nakamura S, Tatematsu M (1997) Gastric and intestinal mixed and solely intestinal types of intestinal metaplasia in the human stomach. Pathol Int 47:831–841PubMedCrossRefGoogle Scholar
  39. 39.
    Inada K, Tanaka H, Nakanishi H, Tsukamoto T, Ikehara Y, Tatematsu K, Nakamura S, Porter EM, Tatematsu M (2001) Identification of Paneth cells in pyloric glands associated with gastric and intestinal mixed-type intestinal metaplasia. Virchows Arch 439:14–20PubMedCrossRefGoogle Scholar
  40. 40.
    Thompson M, Fleming KA, Evans DJ, Fundele R, Surani MA, Wright NA (1990) Gastric endocrine cells share a clonal origin with other gut cell lineages. Development 110(2):477–481PubMedGoogle Scholar
  41. 41.
    Nomura S, Esumi H, Job C, Tan SS (1998) Lineage and clonal development of gastric glands. Clonal analysis of isolated intestinal metaplastic glands of stomach using X linked polymorphism. Dev Biol 204(1):124–135PubMedCrossRefGoogle Scholar
  42. 42.
    Nomura S, Kaminishi M, Sugiyama K, Oohara T, Esumi H (1996) Clonal analysis of isolated single fundic and pyloric gland of stomach using X-linked polymorphism. Biochem Biophys Res Commun 226(2):385–390PubMedCrossRefGoogle Scholar
  43. 43.
    Nomura S, Kaminishi M, Sugiyama K, Oohara T, Esumi H (1998) Clonal analysis of isolated intestinal metaplastic glands of stomach using X linked polymorphism. Gut 42(5):663–668PubMedCrossRefGoogle Scholar
  44. 44.
    Mihara M, Yoshida Y, Tsukamoto T et al (2006) Methylation of multiple genes in gastric glands with intestinal metaplasia. A disorder with polyclonal origins. Am J Pathol 169:1643–1651PubMedCrossRefGoogle Scholar
  45. 45.
    Novelli M, Cossu A, Oukrif D, Quaglia A, Lakhani S, Poulsom R et al (2003) X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci U S A 100:3311–3314PubMedCrossRefGoogle Scholar
  46. 46.
    Novelli MR, Williamson JA, Tomlinson IP, Elia G, Hodgson SV, Talbot IC et al (1996) Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272:1187–1190PubMedCrossRefGoogle Scholar
  47. 47.
    Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC et al (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112:1351–1360PubMedGoogle Scholar
  48. 48.
    Gutierrez-Gonzalez L, Deheragoda M, Elia G, Leedham SJ, Shankar A, Imber C, Jankowski JA, Turnbull DM, Novelli M, Wright NA, McDonald SA (2009) Analysis of the clonal architecture of the human small intestinal epithelium establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations. J Pathol 217(4):489–496PubMedCrossRefGoogle Scholar
  49. 49.
    Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, Oukrif D et al (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci U S A 103:714–719PubMedCrossRefGoogle Scholar
  50. 50.
    McDonald SA, Greaves LC, Gutierrez-Gonzalez L, Rodriguez-Justo M, Deheragoda M, Leedham SJ et al (2008) Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 134:500–510PubMedCrossRefGoogle Scholar
  51. 51.
    Paulson TG, Xu L, Sanchez C et al (2006) Neosquamous epithelium does not typically arise from Barrett’s epithelium. Clin Cancer Res 12:1701–1706PubMedCrossRefGoogle Scholar
  52. 52.
    Coad RA, Woodman AC, Warner PJ et al (2005) On the histogenesis of Barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J Pathol 206:388–394PubMedCrossRefGoogle Scholar
  53. 53.
    Ahnen DJ, Poulsom R, Stamp GW et al (1994) The ulceration-associated cell lineage (UACL) reiterates the Brunner’s gland differentiation programme but acquires the proliferative organization of the gastric gland. J Pathol 173:317–326PubMedCrossRefGoogle Scholar
  54. 54.
    Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924–935PubMedCrossRefGoogle Scholar
  55. 55.
    Caignard A, Martin MS, Michel MF, Martin F (1985) Interaction between two cellular subpopulations of a rat colonic carcinoma when inoculated to the syngeneic host. Int J Cancer 36:273–279PubMedCrossRefGoogle Scholar
  56. 56.
    Moreno E (2008) Is cell competition relevant to cancer? Nat Rev Cancer 8(2):141–147PubMedCrossRefGoogle Scholar
  57. 57.
    Rhiner C, Moreno E (2009) Super competition as a possible mechanism to pioneer precancerous fields. Carcinogenesis 30(5):723–728PubMedCrossRefGoogle Scholar
  58. 58.
    Harvey K, Tapon N (2007) The Salvador–Warts–Hippo pathway – an emerging tumour-suppressor network. Nat Rev Cancer 7:182–191PubMedCrossRefGoogle Scholar
  59. 59.
    Tyler DM et al (2007) Genes affecting cell competition in Drosophila. Genetics 175:643–657PubMedCrossRefGoogle Scholar
  60. 60.
    Leedham SJ, Graham TA, Oukrif D, McDonald SA, Rodriguez-Justo M, Harrison RF, Shepherd NA, Novelli MR, Jankowski JA, Wright NA (2009) Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated neoplasia. Gastroenterology 136:542–550PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Histopathology LabCancer Research UKLondonUK
  2. 2.The Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK

Personalised recommendations