Skip to main content

Patient-Specific Modeling of Hypoxic Response and Microvasculature Dynamics

  • Chapter
  • First Online:
Patient-Specific Modeling of the Cardiovascular System

Abstract

Human life evolved in the presence of oxygen, and even small alterations to this essential element can trigger a cascade of biological events. Conditions affecting how we metabolize oxygen and respond to hypoxia determine whether we thrive or succumb to disease. Physiological processes such as exercise, aging, hormonal cycle, and wound healing depend on genetic, epigenetic, and protein level changes in hypoxic response. Furthermore, all leading causes of death in the USA involve hypoxia and alter the microvasculature, through increases or decreases in the degree of angiogenesis (i.e., the growth capillaries from preexisting blood vessels). Patient variability – both in physiological and pathological conditions – determines how a given individual will respond to hypoxic exposure, and therapies targeting hypoxic pathways. The degree and breadth of patient variability is so wide regarding oxygen sensing and response, that computational modeling has become necessary to capture its complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agani, F. H., Puchowicz, M., Chavez, J. C., Pichiule, P. & Lamanna, J. (2002) Role of nitric oxide in the regulation of HIF-1alpha expression during hypoxia. Am J Physiol Cell Physiol, 283, C178–86.

    PubMed  CAS  Google Scholar 

  2. Airley, R. E. & Mobasheri, A. (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy, 53, 233–56.

    Article  PubMed  CAS  Google Scholar 

  3. Alqawi, O., Moghaddas, M. & Singh, G. (2006) Effects of geldanamycin on HIF-1alpha mediated angiogenesis and invasion in prostate cancer cells. Prostate Cancer Prostatic Dis, 9, 126–35.

    Article  PubMed  CAS  Google Scholar 

  4. Amalinei, C., Caruntu, I. D. & Balan, R. A. (2007) Biology of metalloproteinases. Rom J Morphol Embryol, 48, 323–34.

    PubMed  Google Scholar 

  5. Arany, Z. (2008) PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev, 18, 426–34.

    Article  PubMed  CAS  Google Scholar 

  6. Arany, Z., Foo, S. Y., Ma, Y., Ruas, J. L., Bommi-Reddy, A., Girnun, G., Cooper, M., Laznik, D., Chinsomboon, J., Rangwala, S. M., Baek, K. H., Rosenzweig, A. & Spiegelman, B. M. (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature, 451, 1008–12.

    Article  PubMed  CAS  Google Scholar 

  7. Archer, S. L., Gomberg-Maitland, M., Maitland, M. L., Rich, S., Garcia, J. G. & Weir, E. K. (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol, 294, H570–8.

    Article  PubMed  CAS  Google Scholar 

  8. Bailey, A. M., Thorne, B. C. & Peirce, S. M. (2007) Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng, 35, 916–36.

    Article  PubMed  Google Scholar 

  9. Bentley, K., Mariggi, G., Gerhardt, H. & Bates, P. A. (2009) Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol, 5, e1000549.

    Article  PubMed  Google Scholar 

  10. Brahimi-Horn, M. C. & Pouyssegur, J. (2007) Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol, 73, 450–7.

    Article  PubMed  CAS  Google Scholar 

  11. Brooks, J. T., Elvidge, G. P., Glenny, L., Gleadle, J. M., Liu, C., Ragoussis, J., Smith, T. G., Talbot, N. P., Winchester, L., Maxwell, P. H. & Robbins, P. A. (2009) Variations within oxygen-regulated gene expression in humans. J Appl Physiol, 106, 212–20.

    Article  PubMed  CAS  Google Scholar 

  12. Brune, B. & Zhou, J. (2003) The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Curr Med Chem, 10, 845–55.

    Article  PubMed  CAS  Google Scholar 

  13. Bryan, B. A., Walshe, T. E., Mitchell, D. C., Havumaki, J. S., Saint-Geniez, M., Maharaj, A. S., Maldonado, A. E. & D’Amore, P. A. (2008) Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Mol Biol Cell, 19, 994–1006.

    Article  PubMed  CAS  Google Scholar 

  14. Callapina, M., Zhou, J., Schmid, T., Kohl, R. & Brune, B. (2005) NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species. Free Radic Biol Med, 39, 925–36.

    Article  PubMed  CAS  Google Scholar 

  15. Chaplain, M. A., McDougall, S. R. & Anderson, A. R. (2006) Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng, 8, 233–57.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, K., Pittman, R. N. & Popel, A. S. (2007) Vascular smooth muscle NO exposure from intraerythrocytic SNOHb: a mathematical model. Antioxid Redox Signal, 9, 1097–110.

    Article  PubMed  CAS  Google Scholar 

  17. Chen, K. & Popel, A. S. (2006) Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic Biol Med, 41, 668–80.

    Article  PubMed  CAS  Google Scholar 

  18. Chen, K. & Popel, A. S. (2007) Vascular and perivascular nitric oxide release and transport: Biochemical pathways of neuronal nitric oxide synthase (NOS1) and endothelial nitric oxide synthase (NOS3). Free Radic Biol Med, 42, 811–22.

    Article  PubMed  CAS  Google Scholar 

  19. D’Angelo, G., Duplan, E., Boyer, N., Vigne, P. & Frelin, C. (2003) Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem, 278, 38183–7.

    Article  PubMed  Google Scholar 

  20. Das, B., Yeger, H., Tsuchida, R., Torkin, R., Gee, M. F., Thorner, P. S., Shibuya, M., Malkin, D. & Baruchel, S. (2005) A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxia-inducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma. Cancer Res, 65, 7267–75.

    Article  PubMed  CAS  Google Scholar 

  21. Deonikar, P. & Kavdia, M. (2009) An integrated computational and experimental model of nitric oxide-red blood cell interactions. Ann Biomed Eng, 38, 357–70.

    Article  PubMed  Google Scholar 

  22. Freeman, R. S. & Barone, M. C. (2005) Targeting hypoxia-inducible factor (HIF) as a therapeutic strategy for CNS disorders. Curr Drug Targets CNS Neurol Disord, 4, 85–92.

    Article  PubMed  CAS  Google Scholar 

  23. Galanis, A., Pappa, A., Giannakakis, A., Lanitis, E., Dangaj, D. & Sandaltzopoulos, R. (2008) Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett, 266, 12–20.

    Article  PubMed  CAS  Google Scholar 

  24. Gao, P., Zhang, H., Dinavahi, R., Li, F., Xiang, Y., Raman, V., Bhujwalla, Z. M., Felsher, D. W., Cheng, L., Pevsner, J., Lee, L. A., Semenza, G. L. & Dang, C. V. (2007) HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 12, 230–8.

    Article  PubMed  CAS  Google Scholar 

  25. Garcia, J. A. (2006) HIFing the brakes: therapeutic opportunities for treatment of human malignancies. Sci STKE, 2006, pe25.

    Article  PubMed  Google Scholar 

  26. Geng, T., Li, P., Okutsu, M., Yin, X., Kwek, J., Zhang, M. & Yan, Z. (2010) PGC-1{alpha} plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol, 298, C572–9.

    Article  PubMed  CAS  Google Scholar 

  27. Goldman, D. (2008) Theoretical models of microvascular oxygen transport to tissue. Microcirculation, 15, 795–811.

    Article  PubMed  Google Scholar 

  28. Gottlieb, E. & Tomlinson, I. P. (2005) Mitochondrial tumour suppressors: a genetic and ­biochemical update. Nat Rev Cancer, 5, 857–66.

    Article  PubMed  CAS  Google Scholar 

  29. Guerreiro-Lucas, L. A., Pop, S. R., Machado, M. J., Ma, Y. L., Waters, S. L., Richardson, G., Saetzler, K., Jensen, O. E. & Mitchell, C. A. (2008) Experimental and theoretical modelling of blind-ended vessels within a developing angiogenic plexus. Microvasc Res, 76, 161–8.

    Article  PubMed  CAS  Google Scholar 

  30. Guzy, R. D. & Schumacker, P. T. (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol, 91, 807–19.

    Article  PubMed  CAS  Google Scholar 

  31. Herr, B., Zhou, J., Drose, S. & Brune, B. (2007) The interaction of superoxide with nitric oxide destabilizes hypoxia-inducible factor-1alpha. Cell Mol Life Sci, 64, 3295–305.

    Article  PubMed  CAS  Google Scholar 

  32. Hoenig, M. R., Bianchi, C. & Sellke, F. W. (2008) Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis. Curr Drug Targets, 9, 422–35.

    Article  PubMed  CAS  Google Scholar 

  33. Jensen, F. B. (2009) The dual roles of red blood cells in tissue oxygen delivery: oxygen ­carriers and regulators of local blood flow. J Exp Biol, 212, 3387–93.

    Article  PubMed  CAS  Google Scholar 

  34. Ji, J. W., Mac Gabhann, F. & Popel, A. S. (2007) Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Am J Physiol Heart Circ Physiol, 293, H3740–9.

    Article  PubMed  CAS  Google Scholar 

  35. Ji, J. W., Tsoukias, N. M., Goldman, D. & Popel, A. S. (2006) A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J Theor Biol, 241, 94–108.

    Article  PubMed  Google Scholar 

  36. Jiang, B. H., Semenza, G. L., Bauer, C. & Marti, H. H. (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol, 271, C1172–80.

    PubMed  CAS  Google Scholar 

  37. Jones, N. M., Lee, E. M., Brown, T. G., Jarrott, B. & Beart, P. M. (2006) Hypoxic preconditioning produces differential expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its regulatory enzyme HIF prolyl hydroxylase 2 in neonatal rat brain. Neurosci Lett, 404, 72–7.

    Article  PubMed  CAS  Google Scholar 

  38. Khanna, S., Roy, S., Maurer, M., Ratan, R. R. & Sen, C. K. (2006) Oxygen-sensitive reset of hypoxia-inducible factor transactivation response: prolyl hydroxylases tune the biological normoxic set point. Free Radic Biol Med, 40, 2147–54.

    Article  PubMed  CAS  Google Scholar 

  39. Kozhukhar, A. V., Yasinska, I. M. & Sumbayev, V. V. (2006) Nitric oxide inhibits HIF-1alpha protein accumulation under hypoxic conditions: implication of 2-oxoglutarate and iron. Biochimie, 88, 411–8.

    Article  PubMed  CAS  Google Scholar 

  40. Krogh, A. (1919) The supply of oxygen to the tissues and the regulation of the capillary ­circulation. J Physiol, 52, 457–74.

    PubMed  CAS  Google Scholar 

  41. Kut, C., Mac Gabhann, F. & Popel, A. S. (2007) Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer, 97, 978–85.

    Article  PubMed  CAS  Google Scholar 

  42. Li, Z., Wang, D., Messing, E. M. & Wu, G. (2005) VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep, 6, 373–8.

    Article  PubMed  CAS  Google Scholar 

  43. Lopez-Lazaro, M. (2007) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett, 252, 1–8.

    Article  PubMed  CAS  Google Scholar 

  44. Lopez-Torres, M. & Barja, G. (2008) Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta, 1780, 1337–47.

    Article  PubMed  CAS  Google Scholar 

  45. Mac Gabhann, F., Ji, J. W. & Popel, A. S. (2007) Multi-scale computational models of ­pro-angiogenic treatments in peripheral arterial disease. Ann Biomed Eng, 35, 982–94.

    Article  PubMed  Google Scholar 

  46. Mac Gabhann, F. & Popel, A. S. (2004) Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am J Physiol Heart Circ Physiol, 286, H153–64.

    Article  PubMed  CAS  Google Scholar 

  47. Mac Gabhann, F. & Popel, A. S. (2005) Differential binding of VEGF isoforms to VEGF Receptor 2 in the presence of Neuropilin-1: a computational model. Am J Physiol Heart Circ Physiol, 288, H2851–60.

    Article  PubMed  CAS  Google Scholar 

  48. Mac Gabhann, F. & Popel, A. S. (2006) Targeting neuropilin-1 to inhibit VEGF signaling in cancer: comparison of therapeutic approaches. PLoS Comput Biol, 2, e180.

    Article  PubMed  Google Scholar 

  49. Mac Gabhann, F. & Popel, A. S. (2007) Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys Chem, 128, 125–39.

    Article  PubMed  CAS  Google Scholar 

  50. Mac Gabhann, F. & Popel, A. S. (2007) Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am J Physiol Heart Circ Physiol, 292, H459–74.

    Article  PubMed  CAS  Google Scholar 

  51. Mac Gabhann, F. & Popel, A. S. (2008) Systems biology of vascular endothelial growth factors. Microcirculation, 15, 715–38.

    Article  PubMed  CAS  Google Scholar 

  52. Mac Gabhann, F., Yang, M. T. & Popel, A. S. (2005) Monte Carlo simulations of VEGF binding to cell surface receptors in vitro. Biochim Biophys Acta, 1746, 95–107.

    Article  PubMed  CAS  Google Scholar 

  53. Matouk, I. J., Mezan, S., Mizrahi, A., Ohana, P., Abu-Lail, R., Fellig, Y., Degroot, N., Galun, E. & Hochberg, A. (2010) The oncofetal H19 RNA connection: Hypoxia, p53 and cancer. Biochim Biophys Acta, 1803, 443–51.

    Article  PubMed  CAS  Google Scholar 

  54. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R. & Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271–5.

    Article  PubMed  CAS  Google Scholar 

  55. Menyhard, D. K. (2009) Comparative computational analysis of active and inactive cofactors of nitric oxide synthase. J Phys Chem B, 113, 3151–9.

    Article  PubMed  CAS  Google Scholar 

  56. Mikirova, N. A., Casciari, J. J. & Riordan, N. H. (2010) Ascorbate inhibition of angiogenesis in aortic rings ex vivo and subcutaneous Matrigel plugs in vivo. J Angiogenes Res, 2, 2.

    Article  PubMed  Google Scholar 

  57. Miquel, J. (2002) Can antioxidant diet supplementation protect against age-related mitochondrial damage? Ann N Y Acad Sci, 959, 508–16.

    Article  PubMed  CAS  Google Scholar 

  58. O’Hagan, K. A., Cocchiglia, S., Zhdanov, A. V., Tambuwala, M. M., Cummins, E. P., Monfared, M., Agbor, T. A., Garvey, J. F., Papkovsky, D. B., Taylor, C. T. & Allan, B. B. (2009) PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A, 106, 2188–93.

    Article  PubMed  Google Scholar 

  59. Oda, S., Oda, T., Nishi, K., Takabuchi, S., Wakamatsu, T., Tanaka, T., Adachi, T., Fukuda, K., Semenza, G. L. & Hirota, K. (2008) Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS One, 3, e2215.

    Article  PubMed  Google Scholar 

  60. Pan, Y., Mansfield, K. D., Bertozzi, C. C., Rudenko, V., Chan, D. A., Giaccia, A. J. & Simon, M. C. (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol, 27, 912–25.

    Article  PubMed  CAS  Google Scholar 

  61. Pathak, A. P., Ward, B. D. & Schmainda, K. M. (2008) A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: the finite perturber method. Neuroimage, 40, 1130–43.

    Article  PubMed  Google Scholar 

  62. Pfafflin, A., Brodbeck, K., Heilig, C. W., Haring, H. U., Schleicher, E. D. & Weigert, C. (2006) Increased glucose uptake and metabolism in mesangial cells overexpressing glucose transporter 1 increases interleukin-6 and vascular endothelial growth factor production: role of AP-1 and HIF-1alpha. Cell Physiol Biochem, 18, 199–210.

    Article  PubMed  Google Scholar 

  63. Pouyssegur, J. & Mechta-Grigoriou, F. (2006) Redox regulation of the hypoxia-inducible factor. Biol Chem, 387, 1337–46.

    Article  PubMed  CAS  Google Scholar 

  64. Powell, F. L. (2003) Functional genomics and the comparative physiology of hypoxia. Annu Rev Physiol, 65, 203–30.

    Article  PubMed  CAS  Google Scholar 

  65. Qutub, A., Gabhann, F., Karagiannis, E., Vempati, P. & Popel, A. (2009) Multiscale models of angiogenesis. IEEE Eng Med Biol Mag, 28, 14–31.

    Article  PubMed  Google Scholar 

  66. Qutub, A. & Popel, A. (2008) Reactive oxygen species regulate hypoxia-inducible factor HIF1alpha differentially in cancer and ischemia. Mol Cell Biol, 28, 5106–19.

    Article  PubMed  CAS  Google Scholar 

  67. Qutub, A. A., Liu, G., Vempati, P. & Popel, A. S. (2009) Integration of angiogenesis modules at multiple scales: from molecular to tissue. Pac Symp Biocomput, 316–27.

    Google Scholar 

  68. Qutub, A. A. & Popel, A. S. (2006) A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J Cell Sci, 119, 3467–80.

    Article  PubMed  CAS  Google Scholar 

  69. Qutub, A. A. & Popel, A. S. (2007) Three autocrine feedback loops determine HIF1 alpha expression in chronic hypoxia. Biochim Biophys Acta, 1773, 1511–25.

    Article  PubMed  CAS  Google Scholar 

  70. Qutub, A. A. & Popel, A. S. (2009) Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol, 3, 13.

    Article  PubMed  Google Scholar 

  71. Rajah, T. T. & Grammas, P. (2002) VEGF and VEGF receptor levels in retinal and brain-derived endothelial cells. Biochem Biophys Res Commun, 293, 710–3.

    Article  PubMed  CAS  Google Scholar 

  72. Rendon, B. E., Willer, S. S., Zundel, W. & Mitchell, R. A. (2009) Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation. Exp Mol Pathol, 86, 180–5.

    Article  PubMed  CAS  Google Scholar 

  73. Salnikow, K., Aprelikova, O., Ivanov, S., Tackett, S., Kaczmarek, M., Karaczyn, A., Yee, H., Kasprzak, K. S. & Niederhuber, J. (2008) Regulation of hypoxia-inducible genes by ETS1 transcription factor. Carcinogenesis, 29, 1493–9.

    Article  PubMed  CAS  Google Scholar 

  74. Schmidt, C., Bezuidenhout, D., Beck, M., Van der Merwe, E., Zilla, P. & Davies, N. (2009) Rapid three-dimensional quantification of VEGF-induced scaffold neovascularisation by microcomputed tomography. Biomaterials, 30, 5959–68.

    Article  PubMed  CAS  Google Scholar 

  75. Schultz, A., Lavie, L., Hochberg, I., Beyar, R., Stone, T., Skorecki, K., Lavie, P., Roguin, A. & Levy, A. P. (1999) Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation, 100, 547–52.

    Article  PubMed  CAS  Google Scholar 

  76. Semenza, G. L. (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med, 8, S62–7.

    Article  PubMed  CAS  Google Scholar 

  77. Semenza, G. L. (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda), 19, 176–82.

    Article  CAS  Google Scholar 

  78. Semenza, G. L. (2006) Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets, 10, 267–80.

    Article  PubMed  CAS  Google Scholar 

  79. Semenza, G. L. (2009) Regulation of vascularization by hypoxia-inducible factor 1. Ann N Y Acad Sci, 1177, 2–8.

    Article  PubMed  CAS  Google Scholar 

  80. Sharp, F. R., Ran, R., Lu, A., Tang, Y., Strauss, K. I., Glass, T., Ardizzone, T. & Bernaudin, M. (2004) Hypoxic preconditioning protects against ischemic brain injury. Neurorx, 1, 26–35.

    Article  PubMed  Google Scholar 

  81. Sluimer, J. C. & Daemen, M. J. (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol, 218, 7–29.

    Article  PubMed  Google Scholar 

  82. Sluimer, J. C., Gasc, J. M., Van Wanroij, J. L., Kisters, N., Groeneweg, M., Sollewijn Gelpke, M. D., Cleutjens, J. P., Van den Akker, L. H., Corvol, P., Wouters, B. G., Daemen, M. J. & Bijnens, A. P. (2008) Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol, 51, 1258–65.

    Article  PubMed  CAS  Google Scholar 

  83. Smith, T. G., Robbins, P. A. & Ratcliffe, P. J. (2008) The human side of hypoxia-inducible factor. Br J Haematol, 141, 325–34.

    Article  PubMed  CAS  Google Scholar 

  84. Smith, T. G., Talbot, N. P., Privat, C., Rivera-Ch, M., Nickol, A. H., Ratcliffe, P. J., Dorrington, K. L., Leon-Velarde, F. & Robbins, P. A. (2009) Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials. JAMA, 302, 1444–50.

    Article  PubMed  CAS  Google Scholar 

  85. Stiehl, D. P., Wirthner, R., Koditz, J., Spielmann, P., Camenisch, G. & Wenger, R. H. (2006) Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem, 281, 23482–91.

    Article  PubMed  CAS  Google Scholar 

  86. Taylor, C. T. (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J, 409, 19–26.

    Article  PubMed  CAS  Google Scholar 

  87. Tsoukias, N. M., Goldman, D., Vadapalli, A., Pittman, R. N. & Popel, A. S. (2007) A ­computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks. J Theor Biol, 248, 657–74.

    Article  PubMed  CAS  Google Scholar 

  88. Van Faassen, E. E., Bahrami, S., Feelisch, M., Hogg, N., Kelm, M., Kim-Shapiro, D. B., Kozlov, A. V., Li, H., Lundberg, J. O., Mason, R., Nohl, H., Rassaf, T., Samouilov, A., Slama-Schwok, A., Shiva, S., Vanin, A. F., Weitzberg, E., Zweier, J. & Gladwin, M. T. (2009) Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev, 29, 683–741.

    Article  PubMed  Google Scholar 

  89. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 92, 5510–4.

    Article  PubMed  CAS  Google Scholar 

  90. Wellman, T. L., Jenkins, J., Penar, P. L., Tranmer, B., Zahr, R. & Lounsbury, K. M. (2004) Nitric oxide and reactive oxygen species exert opposing effects on the stability of hypoxia-inducible factor-1alpha (HIF-1alpha) in explants of human pial arteries. FASEB J, 18, 379–81.

    PubMed  CAS  Google Scholar 

  91. Xing, G., Qualls, C., Huicho, L., Rivera-Ch, M., Stobdan, T., Slessarev, M., Prisman, E., Ito, S., Wu, H., Norboo, A., Dolma, D., Kunzang, M., Norboo, T., Gamboa, J. L., Claydon, V. E., Fisher, J., Zenebe, G., Gebremedhin, A., Hainsworth, R., Verma, A. & Appenzeller, O. (2008) Adaptation and mal-adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns. PLoS One, 3, e2342.

    Article  PubMed  Google Scholar 

  92. Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., Dang, C. V. & Semenza, G. L. (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11, 407–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Ann Qutub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nathan, J., Qutub, A.A. (2010). Patient-Specific Modeling of Hypoxic Response and Microvasculature Dynamics. In: Kerckhoffs, R. (eds) Patient-Specific Modeling of the Cardiovascular System. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6691-9_11

Download citation

Publish with us

Policies and ethics