Advertisement

In Vivo Functions of Isgylation

  • Klaus-Peter Knobeloch
Part of the Subcellular Biochemistry book series (SCBI, volume 54)

Abstract

This chapter recapitulates our current knowledge about the functions of the interferon stimulated gene 15 (ISG15) system in vivo with a specific focus on physiological aspects and the biological relevance of ISG15 conjugation and deconjugation. ISG15 contains two domains with structural similarity to ubiquitin and was the first ubiquitin like modifier (UBL) described. It can be conjugated to protein substrates in a process similar to ubiquitin modification termed ISGylation. Of all ubiquitin like modifications ISGylation exhibits the highest degree of interlace with the ubiquitin system and distinct ubiquitin ligases and isopeptidases can also mediate ISG15 linkage and deconjugation, respectively. The system is strongly induced by Type I interferons or microbial infections and studies based on gene targeted mice have shown that it plays an important role in antiviral defence.

Keywords

Human Physiology Melanoma Cell Conditioned Medium Current Knowledge Ubiquitin Ligase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haas AL, Ahrens P, Bright PM et al. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 1987; 262:11315–23.PubMedGoogle Scholar
  2. 2.
    D’Cunha J, Knight E Jr, Haas AL et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 1996; 93:211–5.PubMedCrossRefGoogle Scholar
  3. 3.
    D’Cunha J, Ramanujam S, Wagner RJ et al. In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J Immunol 1996; 157:4100–8.PubMedGoogle Scholar
  4. 4.
    Padovan E, Terracciano L, Certa U et al. Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res 2002; 62:3453–8.PubMedGoogle Scholar
  5. 5.
    Ritchie KJ, Zhang DE. ISG15: the immunological kin of ubiquitin. Seminars in Cell and Developmental Biology 2004; 15:237–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Haas AL, Ahrens P, Bright PM et al. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 1987; 262:11315–23.PubMedGoogle Scholar
  7. 7.
    Yuan WM, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO Journal 2001; 20:362–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhao C, Beaudenon SL, Kelley ML et al. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc Natl Acad Sci USA 2004; 101:7578–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Takeuchi T, Iwahara S, Saeki Y et al. Link between the ubiquitin conjugation system and the ISG15 conjugation system: ISG15 conjugation to the UbcH6 ubiquitin E2 enzyme. J Biochem 2005; 138:711–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Wong JJY, Pung YF, Sze NSK et al. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci USA 2006; 103:10735–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Dastur A, Beaudenon S, Kelley M et al. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem 2006; 281:4334–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Zou WG, Zhang DE. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem 2006; 281:3989–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Zou W, Wang J, Zhang DE. Negative regulation of ISG15 E3 ligase EFP through its autoISGylation. Biochem Biophys Res Commun 2007; 354:321–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Okumura F, Zou W, Zhang DE. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev 2007; 21:255–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Wong JJY, Pung YF, Sze NSK et al. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci USA 2006; 103:10735–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Dastur A, Beaudenon S, Kelley M et al. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem 2006; 281:4334–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu LQ, Ilaria R, Kingsley PD et al. A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ET O-expressing mice, functions in hematopoietic cell differentiation. Mol Cell Biol 1999; 19:3029–38.PubMedGoogle Scholar
  18. 18.
    Schwer H, Liu LQ, Zhou LM et al. Cloning and characterization of a novel human ubiquitin-specific protease, a homologue of murine UBP43 (Usp18). Genomics 2000; 65:44–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Malakhov MP, Malakhova OA, Kim KI et al. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem 2002; 277:9976–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Catic A, Fiebiger E, Korbel GA et al. Screen for ISG15-crossreactive deubiquitinases. PLoS ONE 2007; 2:e679.PubMedCrossRefGoogle Scholar
  21. 21.
    Yuan WM, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 2001; 20:362–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Okumura A, Lu GS, Pitha-Rowe I et al. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA 2006; 103:1440–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Giannakopoulos NV, Luo JK, Papov V et al. Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun 2005; 336:496–506.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao C, Denison C, Huibregtse JM et al. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci USA 2005; 102:10200–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Ritchie KJ, Malakhov MP, Hetherington CJ et al. Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev 2002; 16:2207–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Potter JL, Narasimhan J, Mende-Mueller L et al. Precursor processing of pro-ISG15/UCRP, an interferon-beta-induced ubiquitin-like protein. J Biol Chem 1999; 274:25061–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Malakhova OA, Yan M, Malakhov MP et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes and Development 2003; 17:455–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Ritchie KJ, Hahn CS, Kim KI et al. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nature Medicine 2004; 10:1374–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Randall G, Chen LM, Panis M et al. Silencing of USP18 potentiates the antiviral activity of interferon against hepatitis C virus infection. Gastroenterology 2006; 131:1584–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Malakhova OA, Yan M, Malakhov MP et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes and Development 2003; 17:455–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Osiak A, Utermohlen O, Niendorf S et al. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol 2005; 25:6338–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Knobeloch KP, Utermohlen O, Kisser A et al. Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol Cell Biol 2005; 25:11030–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim KI, Yan M, Malakhova O et al. Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling. Mol Cell Biol 2006; 26:472–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Malakhova OA, Kim KI, Luo JK et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J 2006; 25:2358–67.PubMedCrossRefGoogle Scholar
  35. 35.
    Yan M, Luo JK, Ritchie KJ et al. Ubp43 regulates BCR-ABL leukemogenesis via the type 1 interferon receptor signaling. Blood 2007; 110:305–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Osiak A, Utermohlen O, Niendorf S et al. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol 2005; 25:6338–45.PubMedCrossRefGoogle Scholar
  37. 37.
    Lenschow DJ, Lai C, Frias-Staheli N et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes and Sindbis viruses. Proc Natl Acad Sci USA 2007; 104:1371–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Hsiang TY, Zhao C, Krug RM. Interferon-induced ISG15 conjugation inhibits influenza A virus gene expression and replication in human cells. J Virol 2009; 83:5971–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008; 8:559–68.PubMedCrossRefGoogle Scholar
  40. 40.
    Giannakopoulos NV, Arutyunova E, Lai C et al. ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus. J Virol 2009; 83:1602–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Lai C, Struckhoff JJ, Schneider J et al. Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and nonmouse-adapted influenza B virus infection. J Virol 2009; 83:1147–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Pitterle DM, Jolicoeur EM, Bepler G. Hot spots for molecular genetic alterations in lung cancer. In Vivo 1998; 12:643–58.PubMedGoogle Scholar
  43. 43.
    Shah SJ, Blumen S, Pitha-Rowe I et al. UBE1L represses PML/RARalpha by targeting the PML domain for ISG15ylation. Mol Cancer Ther 2008; 7:905–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Pitha-Rowe I, Hassel BA, Dmitrovsky E. Involvement of UBE1L in ISG15 conjugation during retinoid-induced differentiation of acute promyelocytic leukemia. J Biol Chem 2004; 279:18178–87.PubMedCrossRefGoogle Scholar
  45. 45.
    Feng Q, Sekula D, Guo Y et al. UBE1L causes lung cancer growth suppression by targeting cyclin D1. Mol Cancer Ther 2008; 7:3780–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu M, Hummer BT, Li X et al. Camptothecin induces the ubiquitin-like protein, ISG15 and enhances ISG15 conjugation in response to interferon. J Interferon Cytokine Res 2004; 24:647–54.PubMedGoogle Scholar
  47. 47.
    Desai SD, Haas AL, Wood LM et al. Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 2006; 66:921–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Andersen JB, Aaboe M, Borden EC et al. Stage-associated overexpression of the ubiquitin-like protein, ISG15, in bladder cancer. Br J Cancer 2006; 94:1465–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Kiessling A, Hogrefe C, Erb S et al. Expression, regulation and function of the ISGylation system in prostate cancer. Oncogene 2009; 28:2606–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Zou W, Papov V, Malakhova O et al. ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem Biophys Res Commun 2005; 336:61–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Takeuchi T, Iwahara S, Saeki Y et al. Link between the ubiquitin conjugation system and the ISG15 conjugation system: ISG15 conjugation to the UbcH6 ubiquitin E2 enzyme. J Biochemistry 2005; 138:711–9.CrossRefGoogle Scholar
  52. 52.
    Jeon YJ, Choi JS, Lee JY et al. Filamin B serves as a molecular scaffold for type I interferon-induced c-Jun NH2-terminal kinase signaling pathway. Mol Biol Cell 2008; 19:5116–30.PubMedCrossRefGoogle Scholar
  53. 53.
    Jeon YJ, Choi JS, Lee JY et al. ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway. EMBO Rep 2009; 10:374–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Malakhova OA, Zhang DE. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J Biol Chem 2008; 283:8783–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Okumura A, Pitha PM, Harty RN. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci USA 2008; 105:3974–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Malakhova OA, Yan M, Malakhov MP et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 2003; 17:455–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Ritchie KJ, Hahn CS, Kim KI et al. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 2004; 10:1374–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim KI, Malakhova OA, Hoebe K et al. Enhanced antibacterial potential in UBP43-deficient mice against Salmonella typhimurium infection by up-regulating type I IFN signaling. J Immunol 2005; 175:847–54.PubMedGoogle Scholar
  59. 59.
    Yan M, Luo JK, Ritchie KJ et al. Ubp43 regulates BCR-ABL leukemogenesis via the type 1 interferon receptor signaling. Blood 2007; 110:305–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Osiak A, Utermohlen O, Niendorf S et al. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol 2005; 25:6338–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Guerra S, Caceres A, Knobeloch KP, Horak I, Esteban M. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog 2008; 4:e1000096.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of NeuropathologyUniversity FreiburgFreiburgGermany

Personalised recommendations