Skip to main content

Pupylation

A Signal for Proteasomal Degradation in Mycobacterium tuberculosis

  • Chapter
Conjugation and Deconjugation of Ubiquitin Family Modifiers

Part of the book series: Subcellular Biochemistry ((SCBI,volume 54))

Abstract

This chapter describes the identification of the first prokaryotic ubiquitin-like protein modifier, Pup, which covalently attaches to proteins to target them for destruction by a bacterial proteasome in a manner akin to ubiquitin in eukaryotes. Despite using a proteasome as the end point for proteolysis, Pup and ubiquitin differ in sequence, structure and method of activation and conjugation to protein substrates. Pup is so far the only known posttranslational protein modifier in prokaryotes and its discovery opens the door to the possibility that others are present not only for proteolysis, but also to regulate protein function or localization. Here, we discuss the putative mechanism of activation and conjugation of Pup (termed “pupylation”) to target proteins. In addition, because it is unclear whether or not Pup, like ubiquitin, is recycled or degraded during substrate targeting to the proteasome, we propose methods that may identify Pup deconjugation enzymes (“depupylases”). Finally, we outline future directions for Pup research and anti-tuberculosis drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesman S. Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 2003; 19:565–87.

    Article  CAS  PubMed  Google Scholar 

  2. Butler SM, Festa RF, Pearce MJ et al. Self-compartmentalized Bacteria Proteases and Pathogenesis. Mol Microbiol 2006; 60:553–62.

    Article  CAS  PubMed  Google Scholar 

  3. Lupas A, Zühl F, Tamura T et al. Eubacterial proteasomes. Mol Biol Reports 1997; 24:125–31.

    Article  CAS  Google Scholar 

  4. Darwin KH. Prokaryotic Ubiquitin-Like Protein, Proteasomes and Pathogenesis. Nat Rev Microbiol. 2009; 7:485–91.

    Article  CAS  PubMed  Google Scholar 

  5. Baumeister W, Walz J, Zühl F et al. The proteasome: Paradigm of a self-compartmentalizing protease. Cell 1998; 92:367–80.

    Article  CAS  PubMed  Google Scholar 

  6. Lin G, Hu G, Tsu C et al. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol Microbiol 2006; 59:1405–16.

    Article  CAS  PubMed  Google Scholar 

  7. Pouch M-N, Cournoyer B, Baumeister W. Characterization of the 20S proteasome from the actinomycete Frankia. Mol Microbiol 2000; 35:368–77.

    Article  CAS  PubMed  Google Scholar 

  8. Tamura T, Nagy I, Lupas A et al. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 1995; 5:766–74.

    Article  CAS  PubMed  Google Scholar 

  9. Nagy I, Tamura T, Vanderleyden J et al. The 20S proteasome of Streptomyces coelicolor. J Bacteriol 1998; 180:5448–53.

    CAS  PubMed  Google Scholar 

  10. Lupas A, Zwickl P, Baumeister W. Proteasome sequences in eubacteria. Trends Biochem Sci 1994; 19:533–34.

    Article  CAS  PubMed  Google Scholar 

  11. Wolf S, Nagy I, Lupas A et al. Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J Mol Biol 1998; 277:13–25.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Stoffels K, Wurzbacher S et al. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. J Struct Biol 2004; 146:155–65.

    Article  CAS  PubMed  Google Scholar 

  13. Darwin KH, Ehrt S, Weich N et al. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 2003; 302:1963–6.

    Article  CAS  PubMed  Google Scholar 

  14. Nagy I, Geert S, Vanderleyden J et al. Further sequence analysis of the DNA regions with the Rhodococcus 20S proteasome structural genes reveals extensive homolgy with Mycobacterium leprae. DNA Seq 1997; 7:225–8.

    CAS  PubMed  Google Scholar 

  15. Pearce MJ, Arora P, Festa RA et al. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J 2006; 25:5423–32.

    Article  CAS  PubMed  Google Scholar 

  16. Pearce MJ, Mintseris J, Ferreyra J et al. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 2008; 322:1104–7.

    Article  CAS  PubMed  Google Scholar 

  17. Singh A, Mai D, Kumar A et al. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc Natl Acad Sci USA 2006; 103:11346–51.

    Article  CAS  PubMed  Google Scholar 

  18. Burns KE, Liu WT, Boshoff HI et al. Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 2009; 284:3069–75.

    Article  CAS  PubMed  Google Scholar 

  19. Pickart CM. Mechanisms Underlying Ubiquitination. Annual Review of Biochemistry 2001; 70:503–33.

    Article  CAS  PubMed  Google Scholar 

  20. Striebel F, Imkamp F, Sutter M et al. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 2009.

    Google Scholar 

  21. Iyer LM, Burroughs AM, Aravind L. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol Direct 2008; 3:45.

    Article  PubMed  CAS  Google Scholar 

  22. Deshaies RJ, Joazeiro CAP. RING Domain E3 Ubiquitin Ligases. Annual Review of Biochemistry 2009; 78:399–434.

    Article  CAS  PubMed  Google Scholar 

  23. Borodovsky A, Ovaa H, Meester WJ et al. Small-molecule inhibitors and probes for ubiquitin-and ubiquitin-like-specific proteases. Chembiochem 2005; 6:287–91.

    Article  CAS  PubMed  Google Scholar 

  24. Borodovsky A, Ovaa H, Kolli N et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 2002; 9:1149–59.

    Article  CAS  PubMed  Google Scholar 

  25. Hartman SC. Glutaminase from Escherichia coli. Journal of Biologica Chemistry 1968; 243:853.

    CAS  Google Scholar 

  26. Prajda N. Enzyme targets of antiglutamine agents in cancer chemotherapy. Adv Enzyme Regul 1985; 24:207–23.

    Article  CAS  PubMed  Google Scholar 

  27. Nijman SM, Luna-Vargas MP, Velds A et al. A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005; 123:773–86.

    Article  CAS  PubMed  Google Scholar 

  28. Sowa ME, Bennett EJ, Gygi SP et al. Defining the Human Deubiquitinating Enzyme Interaction Landscape. Cell 2009; 138:389–403.

    Article  CAS  PubMed  Google Scholar 

  29. Liao S, Shang Q, Zhang X et al. Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochem J 2009; in press.

    Google Scholar 

  30. Chen X, Solomon WC, Kang Y et al. Prokaryotic ubiquitin-like protein Pup is intrinsically disordered. J Mol Biol 2009; in press.

    Google Scholar 

  31. Vijay-Kumar S, Bugg CE, Wilkinson KD et al. Three-dimensional struture of ubiquitin at 2.8 A resolution. PNAS 1985; 82:3582–5.

    Article  CAS  PubMed  Google Scholar 

  32. Benaroudj N, Goldberg AL. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol 2000; 2:833–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Heran Darwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Burns, K.E., Darwin, K.H. (2010). Pupylation. In: Groettrup, M. (eds) Conjugation and Deconjugation of Ubiquitin Family Modifiers. Subcellular Biochemistry, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6676-6_12

Download citation

Publish with us

Policies and ethics