Hox Genes pp 63-78 | Cite as

Control of Vertebrate Hox Clusters by Remote and Global Cis-Acting Regulatory Sequences

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 689)


Despite apparently shared structural organisation and functional roles, vertebrate Hox genes are controlled by regulatory mechanisms rather distinct from those of the prototypic Drosophila Antennapedia (ANT-C) and Bithorax (BX-C) Complexes. If individual regulatory modules have been shown to recapitulate specific Hox expression patterns, other experimental studies underscore that vertebrate Hox clusters are controlled in many of their functions in a global manner, through distinct mechanisms. We will discuss the different models that have been proposed to account for these global regulatory modes. In this context, the studies of the regulation of the HoxD complex during limb development highlighted the role of global regulatory elements and the different mechanisms associated to transform a structural organisation into distinct temporal and spatial expression domains. We will further discuss how these mechanisms may have benefited from the structure of the vertebrate homeotic clusters and reciprocally contribute to shape their evolution towards an increased level of organisation and compaction.


Expression Domain Chromosomal Territory Primitive Streak Distal Limb Hoxd Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276:565–70.PubMedCrossRefGoogle Scholar
  2. 2.
    McGinnis W, Levine MS, Hafen E et al. A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 1984; 308:428–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Scott MP, Weiner AJ. Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax and fushi tarazu loci of Drosophila. Proc Natl Acad Sci USA 1984; 81:4115–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Duboule D, Baron A, Mahl P et al. A new homeo-box is present in overlapping cosmid clones which define the mouse Hox-1 locus. Embo J 1986; 5:1973–80.PubMedGoogle Scholar
  5. 5.
    Boncinelli E, Somma R, Acampora D et al. Organization of human homeobox genes. Hum Reprod 1988; 3:880–6.PubMedGoogle Scholar
  6. 6.
    Akam M. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 1989; 57:347–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Gaunt SJ, Krumlauf R, Duboule D. Mouse homeo-genes within a subfamily, Hox-1.4,-2.6 and-5.1, display similar anteroposterior domains of expression in the embryo, but show stage-and tissue-dependent differences in their regulation. Development 1989; 107:131–41.PubMedGoogle Scholar
  8. 8.
    Graham A, Papalopulu N, Krumlauf R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 1989; 57:367–78.PubMedCrossRefGoogle Scholar
  9. 9.
    Krumlauf R. Hox genes in vertebrate development. Cell 1994; 78:191–201.PubMedCrossRefGoogle Scholar
  10. 10.
    Deschamps J. Ancestral and recently recruited global control of the Hox genes in development. Curr Opin Genet Dev 2007; 422–7.Google Scholar
  11. 11.
    Duboule D. Vertebrate Hox gene regulation: clustering and/or colinearity? Curr Opin Genet Dev 1998; 8:514–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Ikuta T, Yoshida N, Satoh N et al. Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci USA 2004; 101:15118–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Lemons D, McGinnis W. Genomic evolution of Hox gene clusters. Science 2006; 313:1918–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Seo HC, Edvardsen RB, Maeland AD et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 2004; 431:67–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Renucci A, Zappavigna V, Zakany J et al. Comparison of mouse and human HOX-4 complexes defines conserved sequences involved in the regulation of Hox-4.4. Embo J 1992; 11:1459–68.PubMedGoogle Scholar
  16. 16.
    Tuggle CK, Zakany J, Cianetti L et al. Region-specific enhancers near two mammalian homeo box genes define adjacent rostrocaudal domains in the central nervous system. Genes Dev 1990; 4:180–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Whiting J, Marshall H, Cook M et al. Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev 1991; 5:2048–59.PubMedCrossRefGoogle Scholar
  18. 18.
    Zakany J, Tuggle CK, Patel MD et al. Spatial regulation of homeobox gene fusions in the embryonic central nervous system of transgenic mice. Neuron 1988; 1:679–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Puschel AW, Balling R, Gruss P. Separate elements cause lineage restriction and specify boundaries of Hox-1.1 expression. Development 1991; 112:279–87.PubMedGoogle Scholar
  20. 20.
    Wada H, Garcia-Fernandez J, Holland PW. Colinear and segmental expression of amphioxus Hox genes. Dev Biol 1999; 213:131–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Shippy TD, Ronshaugen M, Cande J et al. Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Dev Genes Evol 2008; 127–39.Google Scholar
  22. 22.
    Irvine SQ, Martindale MQ. Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol 2000; 217:333–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Duboule D. The rise and fall of Hox gene clusters. Development 2007; 2549–60.Google Scholar
  24. 24.
    Kmita M, Duboule D. Organizing axes in time and space; 25 years of colinear tinkering. Science 2003;331–3.Google Scholar
  25. 25.
    Simeone A, Acampora D, Arcioni L et al. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 1990; 346:763–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Papalopulu N, Lovell-Badge R, Krumlauf R. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nucleic Acids Res 1991; 19:5497–506.PubMedCrossRefGoogle Scholar
  27. 27.
    Marshall H, Nonchev S, Sham MH et al. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 1992; 360:737–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Langston AW, Gudas LJ. Retinoic acid and homeobox gene regulation. Curr Opin Genet Dev 1994; 4:550–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Marshall H, Studer M, Popperl H et al. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 1994; 370:567–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang F, Popperl H, Morrison A et al. Elements both 5’ and 3’ to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mech Dev 1997; 67:49–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Oosterveen T, Niederreither K, Dollé P et al. Retinoids regulate the anterior expression boundaries of 5′ Hoxb genes in posterior hindbrain. EMBO J 2003; 262–9.Google Scholar
  32. 32.
    Oosterveen T, van Vliet P, Deschamps J et al. The direct context of a Hox retinoic acid response element is crucial for its activity. J Biol Chem 2003; 278:24103–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Gould A, Itasaki N, Krumlauf R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 1998; 21:39–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Roelen BA, de Graaff W, Forlani S et al. Hox cluster polarity in early transcriptional availability: a high order regulatory level of clustered Hox genes in the mouse. Mech Dev 2002; 81–90.Google Scholar
  35. 35.
    Kmita M, van der Hoeven F, Zákány J et al. Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex. Genes Dev 2000; 198–211.Google Scholar
  36. 36.
    Manzanares M, Wada H, Itasaki N et al. Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature 2000; 408:854–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Duboule D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl 1994; 135–42.Google Scholar
  38. 38.
    van der Hoeven F, Zákány J, Duboule D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell 1996; 1025–35.Google Scholar
  39. 39.
    Kondo T, Duboule D. Breaking colinearity in the mouse HoxD complex. Cell 1999; 407–17.Google Scholar
  40. 40.
    Forlani S, Lawson KA, Deschamps J. Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 2003; 3807–19.Google Scholar
  41. 41.
    Chambeyron S, Bickmore WA. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 2004; 18:1119–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Chambeyron S, Da Silva NR, Lawson KA et al. Nuclear re-organisation of the HoxB complex during mouse embryonic development. Development 2005; 132:2215–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Morey C, Da Silva NR, Perry P et al. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 2007; 909–19.Google Scholar
  44. 44.
    Morey C, Da Silva NR, Kmita M et al. Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into HoxD. J Cell Sci 2008; 571–7.Google Scholar
  45. 45.
    Sharpe J, Nonchev S, Gould A et al. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. Embo J 1998; 17:1788–98.PubMedCrossRefGoogle Scholar
  46. 46.
    Gould A, Morrison A, Sproat G et al. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 1997; 11:900–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Gerard M, Chen JY, Gronemeyer H et al. In vivo targeted mutagenesis of a regulatory element required for positioning the Hoxd-11 and Hoxd-10 expression boundaries. Genes Dev 1996; 10:2326–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Mann RS. Why are Hox genes clustered? Bioessays 1997; 19:661–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Zakany J, Duboule D. Hox genes in digit development and evolution. Cell Tissue Res 1999; 296:19–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Zakany J, Duboule D. Hox genes and the making of sphincters. Nature 1999; 401:761–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Dolle P, Izpisua-Belmonte JC, Falkenstein H et al. Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature 1989; 342:767–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Dolle P, Izpisua-Belmonte JC, Boncinelli E et al. The Hox-4.8 gene is localized at the 5’ extremity of the Hox-4 complex and is expressed in the most posterior parts of the body during development. Mech Dev 1991; 36:3–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Nelson CE, Morgan BA, Burke AC et al. Analysis of Hox gene expression in the chick limb bud. Development 1996; 122:1449–66.PubMedGoogle Scholar
  54. 54.
    Spitz F, Gonzalez F, Peichel C et al. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev 2001;2209–14.Google Scholar
  55. 55.
    Lee AP, Koh EG, Tay A et al. Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters. Proc Natl Acad Sci USA 2006; 6994–9.Google Scholar
  56. 56.
    Spitz F, Montavon T, Monso-Hinard C et al. A t(2; 8) balanced translocation with breakpoints near the human HOXD complex causes mesomelic dysplasia and vertebral defects. Genomics, 2002; 493–8.Google Scholar
  57. 57.
    Dlugaszewska B, Silahtaroglu A, Menzel C et al. Breakpoints around the HOXD cluster result in various limb malformations. J Med Genet 2006; 111–8.Google Scholar
  58. 58.
    Spitz F, Herkenne C, Morris MA et al. Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 2005; 889–93.Google Scholar
  59. 59.
    Di-Poï N, Zákány J, Duboule D. Distinct roles and regulations for HoxD genes in metanephric kidney development. PLoS Genet 2007; e232.Google Scholar
  60. 60.
    Gonzalez F, Duboule D, Spitz F. Transgenic analysis of Hoxd gene regulation during digit development. Dev Biol 2007; 306(2):847–59.PubMedCrossRefGoogle Scholar
  61. 61.
    Spitz F, Gonzalez F, Duboule D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 2003; 405–17.Google Scholar
  62. 62.
    Carvajal JJ, Cox D, Summerbell D et al. A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development. Development 2001; 128:1857–68.PubMedGoogle Scholar
  63. 63.
    Uchikawa M, Ishida Y, Takemoto T et al. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 2003; 4:509–19.PubMedCrossRefGoogle Scholar
  64. 64.
    Monge I, Kondo T, Duboule D. An enhancer-titration effect induces digit-specific regulatory alleles of the HoxD cluster. Dev Biol 2003; 256:212–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Kmita M, Tarchini B, Duboule D et al. Evolutionary conserved sequences are required for the insulation of the vertebrate HoxD complex in neural cells. Development 2002; 5521–8.Google Scholar
  66. 66.
    Kmita M, Fraudeau N, Hérault Y et al. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 2002; 145–50.Google Scholar
  67. 67.
    Favier B, Le Meur M, Chambon P et al. Axial skeleton homeosis and forelimb malformations in Hoxd-11 mutant mice. Proc Natl Acad Sci USA 1995; 92:310–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Davis AP, Capecchi MR. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of Hoxd-11. Development 1994; 120:2187–98.PubMedGoogle Scholar
  69. 69.
    Kondo T, Dollé P, Zákány J et al. Function of posterior Hoxd genes in the morphogenesis of the anal sphincter. Development 1996; 2651–9.Google Scholar
  70. 70.
    Duboule D, Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994; 10:358–64.PubMedCrossRefGoogle Scholar
  71. 71.
    Palstra RJ, de Laat W, Grosveld F. Chapter 4 beta-globin regulation and long-range interactions. Adv Genet 2008; 107–42.Google Scholar
  72. 72.
    Montavon T, Le Garrec JF, Kerszberg M et al. Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev 2008; 346-59.Google Scholar
  73. 73.
    Tarchini B, Duboule D. Control of Hoxd genes’ collinearity during early limb development. Dev Cell 2006; 93-103.Google Scholar
  74. 74.
    Bergeron J, Clappier E, Cauwelier B et al. HOXA cluster deregulation in T-ALL associated with both a TCRD-HOXA and a CALM-AF10 chromosomal translocation. Leukemia 2006; 20:1184–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Poppe B, Yigit N, De Moerloose B et al. HOXA gene cluster rearrangement in a t(7; 9)(p15; q34) in a child with MDS. Cancer Genet Cytogenet 2005; 162:82–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Yue Y, Farcas R, Thiel G et al. De novo t(12; 17)(p13.3; q21.3) translocation with a breakpoint near the 5’ end of the HOXB gene cluster in a patient with developmental delay and skeletal malformations. Eur J Hum Genet 2007; 15:570–7.PubMedCrossRefGoogle Scholar
  77. 77.
    McEwen GK, Woolfe A, Goode D et al. Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis. Genome Res 2006; 16:451–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Lehoczky JA, Williams ME, Innis JW. Conserved expression domains for genes upstream and within the HoxA and HoxD clusters suggests a long-range enhancer existed before cluster duplication. Evol Dev 2004; 423–30.Google Scholar
  79. 79.
    Suster ML, Kania A, Liao M et al. A novel conserved evx1 enhancer links spinal interneuron morphology and cis-regulation from fish to mammals. Dev Biol 2009; 325:422–33.PubMedCrossRefGoogle Scholar
  80. 80.
    Sordino P, van der Hoeven F, Duboule D. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 1995; 375:678–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Davis MC, Dahn RD, Shubin NH. An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 2007; 473–6.Google Scholar
  82. 82.
    Freitas R, Zhang G, Cohn MJ. Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain. PLoS ONE 2007; e754.Google Scholar
  83. 83.
    Ahn D, Ho RK. Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev Biol 2008; 322:220–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Amemiya CT, Prohaska SJ, Hill-Force A et al. The amphioxus Hox cluster: characterization, comparative genomics and evolution. J Exp Zoolog B Mol Dev Evol 2008; 310:465–77.CrossRefGoogle Scholar
  85. 85.
    Kmita M, Kondo T, Duboule D. Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing. Nat Genet 2000; 26:451–4.PubMedCrossRefGoogle Scholar
  86. 86.
    McIntyre DC, Rakshit S, Yallowitz AR et al. Hox patterning of the vertebrate rib cage. Development 2007; 134:2981–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 2003; 301:363–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Maconochie MK, Nonchev S, Studer M et al. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 1997; 11:1885–95.PubMedCrossRefGoogle Scholar
  89. 89.
    Tumpel S, Cambronero F, Ferretti E et al. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 2007; 302:646–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Yekta S, Tabin CJ, Bartel DP. MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet 2008; 9:789–96.PubMedCrossRefGoogle Scholar
  91. 91.
    Rinn JL, Kertesz M, Wang JK et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129:1311–23.PubMedCrossRefGoogle Scholar
  92. 92.
    Visel A, Blow MJ, Li Z et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009; 457:854–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Yamagishi T, Ozawa M, Ohtsuka C et al. Evx2-Hoxd13 intergenic region restricts enhancer association to Hoxd13 promoter. PLoS ONE 2007; 2:e175.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations