Hox Genes pp 41-62 | Cite as

Maintenance of Hox Gene Expression Patterns

  • Samantha Beck
  • Floria Faradji
  • Hugh Brock
  • Frédérique Peronnet
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 689)


Once established, homeotic gene (Hox) expression is maintained in the original pattern by Polycomb-group (PcG) and trithorax-group (trxG) proteins therefore named maintenance proteins (MPs). PcG and trxG proteins maintain silencing and activation of Hox and many other genes, respectively. We provide here a brief overview of genetics and molecular biology of these proteins and of a third class of proteins termed Enhancers of Trithorax and Polycomb (ETP) that are required for both maintenance of silencing and activation of Hox genes. We examine the recruitment of MPs onto maintenance elements (MEs), their role in the regulation of transcription and the epigenetic marks that could provide maintenance. Lastly, we discuss two important roles of PcG proteins in replication of DNA and stem cell renewal and maintenance.


Polycomb Group Polycomb Group Protein Bithorax Complex trxG Protein Histone Methyltransferase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jacobs JJ, van Lohuizen M. Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim Biophys Acta 2002; 1602:151–161.PubMedGoogle Scholar
  2. 2.
    Cavalli G. Chromatin as a eukaryotic template of genetic information. Curr Opin Cell Biol 2002; 14:269–278.PubMedCrossRefGoogle Scholar
  3. 3.
    Ptashne M. On the use of the word ‘epigenetic’. Curr Biol 2007; 17:R233–236.PubMedCrossRefGoogle Scholar
  4. 4.
    Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006; 6:846–856.PubMedCrossRefGoogle Scholar
  5. 5.
    Brock HW, Fisher CL. Maintenance of gene expression patterns. Dev Dyn 2005; 232:633–655.PubMedCrossRefGoogle Scholar
  6. 6.
    Aggarwal BD, Calvi BR. Chromatin regulates origin activity in Drosophila follicle cells. Nature 2004; 430:372–376.PubMedCrossRefGoogle Scholar
  7. 7.
    Gildea JJ, Lopez R, Shearn A. A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics 2000; 156:645–663.PubMedGoogle Scholar
  8. 8.
    Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276:565–570.PubMedCrossRefGoogle Scholar
  9. 9.
    Struhl G, Akam M. Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. EMBO J 1985; 4:3259–3264.PubMedGoogle Scholar
  10. 10.
    Duncan IM. Polycomblike: a gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster. Genetics 1982; 102:49–70.PubMedGoogle Scholar
  11. 11.
    Slifer EH. A mutant stock of Drosophila with extra sex combs. J Exp Zool 1942; 90:31–40.CrossRefGoogle Scholar
  12. 12.
    Pattatucci AM, Kaufman TC. The homeotic gene Sex combs reduced of Drosophila melanogaster is differentially regulated in the embryonic and imaginal stages of development. Genetics 1991; 129:443–461.PubMedGoogle Scholar
  13. 13.
    Soto MC, Chou TB, Bender W. Comparison of germline mosaics of genes in the Polycomb group of Drosophila melanogaster. Genetics 1995; 140:231–243.PubMedGoogle Scholar
  14. 14.
    Nusslein-Volhard C, Kluding H, Jurgens G. Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harb Symp Quant Biol 1985; 50:145–154.PubMedGoogle Scholar
  15. 15.
    Landecker HL, Sinclair DA, Brock HW. Screen for enhancers of Polycomb and Polycomblike in Drosophila melanogaster. Dev Genet 1994; 15:425–434.PubMedCrossRefGoogle Scholar
  16. 16.
    Sato T, Russell MA, Denell RE. Homoeosis in Drosophila: A New Enhancer of Polycomb and Related Homeotic Mutations. Genetics 1983; 105:357–370.PubMedGoogle Scholar
  17. 17.
    Wu CT, Jones RS, Lasko PF et al. Homeosis and the interaction of zeste and white in Drosophila. Mol Gen Genet 1989; 218:559–564.PubMedCrossRefGoogle Scholar
  18. 18.
    Gaytan de Ayala Alonso A, Gutierrez L, Fritsch C et al. A genetic screen identifies novel polycomb group genes in Drosophila. Genetics 2007; 176:2099–2108.PubMedCrossRefGoogle Scholar
  19. 19.
    Ingham PW, Whittle R. Trithorax: a new homeotic mutation of Drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. I. Putative role during embryogenesis. Mol Gen Genet 1980; 179:607–614.CrossRefGoogle Scholar
  20. 20.
    Mazo AM, Huang DH, Mozer BA et al. The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains. Proc Natl Acad Sci USA 1990; 87:2112–2116.PubMedCrossRefGoogle Scholar
  21. 21.
    Ingham PW. Differential expression of bithorax complex genes in the absence of the extra sex combs and trithorax genes. Nature 1983; 306:591–593.CrossRefGoogle Scholar
  22. 22.
    Kennison JA. Transcriptional activation of Drosophila homeotic genes from distant regulatory elements. Trends Genet 1993; 9:75–79.PubMedCrossRefGoogle Scholar
  23. 23.
    Kennison JA. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet 1995; 29:289–303.PubMedCrossRefGoogle Scholar
  24. 24.
    Milne TA, Sinclair DA, Brock HW. The Additional sex combs gene of Drosophila is required for activation and repression of homeotic loci and interacts specifically with Polycomb and super sex combs. Mol Gen Genet 1999; 261:753–761.PubMedCrossRefGoogle Scholar
  25. 25.
    Bejarano F, Busturia A. Function of the Trithorax-like gene during Drosophila development. Dev Biol 2004; 268:327–341.PubMedCrossRefGoogle Scholar
  26. 26.
    Lopez A, Higuet D, Rosset R et al. corto genetically interacts with Pc-G and trx-G genes and maintains the anterior boundary of Ultrabithorax expression in Drosophila larvae. Mol Genet Genomics 2001; 266:572–583.PubMedCrossRefGoogle Scholar
  27. 27.
    Kodjabachian L, Delaage M, Maurel C et al. Mutations in ccf, a novel Drosophila gene encoding a chromosomal factor, affect progression through mitosis and interact with Pc-G mutations. EMBO J. 16 1998; 17:1063–1075.PubMedCrossRefGoogle Scholar
  28. 28.
    Decoville M, Giacomello E, Leng M et al. DSP1, an HMG-like protein, is involved in the regulation of homeotic genes. Genetics 2001; 157:237–244.PubMedGoogle Scholar
  29. 29.
    Schuettengruber B, Chourrout D, Vervoort M et al. Genome regulation by polycomb and trithorax proteins. Cell 2007; 128:735–745.PubMedCrossRefGoogle Scholar
  30. 30.
    Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 2007; 8:9–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang H, Wang L, Erdjument-Bromage H et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431:873–878.PubMedCrossRefGoogle Scholar
  32. 32.
    Francis NJ, Saurin AJ, Shao Z et al. Reconstitution of a functional core polycomb repressive complex. Mol Cell 2001; 8:545–556.PubMedCrossRefGoogle Scholar
  33. 33.
    Francis NJ, Kingston RE, Woodcock CL. Chromatin compaction by a polycomb group protein complex. Science 2004; 306:1574–1577.PubMedCrossRefGoogle Scholar
  34. 34.
    Fischle W, Wang Y, Jacobs SA et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 2003; 17:1870–1881.PubMedCrossRefGoogle Scholar
  35. 35.
    Ketel CS, Andersen EF, Vargas ML et al. Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes. Mol Cell Biol 2005; 25:6857–6868.PubMedCrossRefGoogle Scholar
  36. 36.
    Muller J, Hart CM, Francis NJ et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 2002; 111:197–208.PubMedCrossRefGoogle Scholar
  37. 37.
    Cao R, Wang L, Wang H et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298:1039–1043.PubMedCrossRefGoogle Scholar
  38. 38.
    Czermin B, Melfi R, McCabe D et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 2002; 111:185–196.PubMedCrossRefGoogle Scholar
  39. 39.
    Ebert A, Schotta G, Lein S et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 2004; 18:2973–2983.PubMedCrossRefGoogle Scholar
  40. 40.
    Martin C, Cao R, Zhang Y. Substrate preferences of the EZH2 histone methyltransferase complex. J Biol Chem 2006; 281:8365–8370.PubMedCrossRefGoogle Scholar
  41. 41.
    Kuzmichev A, Margueron R, Vaquero A et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 2005; 102:1859–1864.PubMedCrossRefGoogle Scholar
  42. 42.
    Nekrasov M, Wild B, Muller J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 2005; 6:348–353.PubMedCrossRefGoogle Scholar
  43. 43.
    Nekrasov M, Klymenko T, Fraterman S et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. Embo J 2007; 26:4078–4088.PubMedCrossRefGoogle Scholar
  44. 44.
    Ebert A, Lein S, Schotta G et al. Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 2006; 14:377–392.PubMedCrossRefGoogle Scholar
  45. 45.
    Papp B, Muller J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 2006; 20:2041–2054.PubMedCrossRefGoogle Scholar
  46. 46.
    Klymenko T, Papp B, Fischle W et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 2006; 20:1110–1122.PubMedCrossRefGoogle Scholar
  47. 47.
    Brown JL, Mucci D, Whiteley M et al. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1998; 1:1057–1064.PubMedCrossRefGoogle Scholar
  48. 48.
    Brown JL, Fritsch C, Mueller J et al. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 2003; 130:285–294.PubMedCrossRefGoogle Scholar
  49. 49.
    Savla U, Benes J, Zhang J et al. Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 2008; 135813–817.Google Scholar
  50. 50.
    Petruk S, Sedkov Y, Smith S et al. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 2001; 294:1331–1334.PubMedCrossRefGoogle Scholar
  51. 51.
    Shilatifard A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 2008; 20:341–348.PubMedCrossRefGoogle Scholar
  52. 52.
    Papoulas O, Beek SJ, Moseley SL et al. The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 1998; 125:3955–3966.PubMedGoogle Scholar
  53. 53.
    Beisel C, Imhof A, Greene J et al. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 2002; 419:857–862.PubMedCrossRefGoogle Scholar
  54. 54.
    Byrd KN, Shearn A. ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 2003; 100:11535–11540.PubMedCrossRefGoogle Scholar
  55. 55.
    Tanaka Y, Katagiri Z, Kawahashi K et al. Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 2007; 397:161–168.PubMedCrossRefGoogle Scholar
  56. 56.
    Kuzin B, Tillib S, Sedkov Y et al. The Drosophila trithorax gene encodes a chromosomal protein and directly regulates the region-specific homeotic gene fork head. Genes Dev 1994; 8:2478–2490.PubMedCrossRefGoogle Scholar
  57. 57.
    Rozovskaia T, Tillib S, Smith S et al. Trithorax and ASH1 interact directly and associate with the trithorax group-responsive bxd region of the Ultrabithorax promoter. Mol Cell Biol 1999; 19:6441–6447.PubMedGoogle Scholar
  58. 58.
    Rozenblatt-Rosen O, Rozovskaia T, Burakov D et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci USA 1998; 95:4152–4157.PubMedCrossRefGoogle Scholar
  59. 59.
    Mohrmann L, Verrijzer CP. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim Biophys Acta 2005; 1681:59–73.PubMedGoogle Scholar
  60. 60.
    Janody F, Martirosyan Z, Benlali A et al. Two subunits of the Drosophila mediator complex act together to control cell affinity. Development 2003; 130:3691–3701.PubMedCrossRefGoogle Scholar
  61. 61.
    Salvaing J, Lopez A, Boivin A et al. The Drosophila Corto protein interacts with Polycomb-group proteins and the GAGA factor. Nucleic Acids Res 2003; 31:2873–2882.PubMedCrossRefGoogle Scholar
  62. 62.
    Poux S, Melfi R, Pirrotta V. Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes Dev 2001; 15:2509–2514.PubMedCrossRefGoogle Scholar
  63. 63.
    Salvaing J, Decoville M, Mouchel-Vielh E et al. Corto and DSP1 interact and bind to a maintenance element of the Scr Hox gene: understanding the role of Enhancers of trithorax and Polycomb. BMC Biol 2006; 4:9.PubMedCrossRefGoogle Scholar
  64. 64.
    Grimaud C, Negre N, Cavalli G. From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 2006; 14:363–375.PubMedCrossRefGoogle Scholar
  65. 65.
    Dejardin J, Rappailles A, Cuvier O et al. Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 2005; 434:533–538.PubMedCrossRefGoogle Scholar
  66. 66.
    Petruk S, Smith ST, Sedkov Y et al. Association of trxG and PcG proteins with the bxd maintenance element depends on transcriptional activity. Development 2008; 135:2383–2390.PubMedCrossRefGoogle Scholar
  67. 67.
    Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 2007; 134:223–232.PubMedCrossRefGoogle Scholar
  68. 68.
    Simon J, Chiang A, Bender W et al. Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 1993; 158:131–144.PubMedCrossRefGoogle Scholar
  69. 69.
    Kassis JA. Pairing-sensitive silencing, polycomb group response elements and transposon homing in Drosophila. Adv Genet 2002; 46:421–438.PubMedCrossRefGoogle Scholar
  70. 70.
    Lanzuolo C, Roure V, Dekker J et al. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 2007; 9:1167–1174.PubMedCrossRefGoogle Scholar
  71. 71.
    Sipos L, Kozma G, Molnar E et al. In situ dissection of a Polycomb response element in Drosophila melanogaster. Proc Natl Acad Sci USA 2007; 104:12416–12421.PubMedCrossRefGoogle Scholar
  72. 72.
    Dellino GI, Tatout C, Pirrotta V. Extensive conservation of sequences and chromatin structures in the bxd polycomb response element among Drosophilid species. Int J Dev Biol 2002; 46:133–141.PubMedGoogle Scholar
  73. 73.
    Barges S, Mihaly J, Galloni M et al. The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 2000; 127:779–790.PubMedGoogle Scholar
  74. 74.
    Mishra RK, Mihaly J, Barges S et al. The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol Cell Biol 2001; 21:1311–1318.PubMedCrossRefGoogle Scholar
  75. 75.
    Schwartz YB, Kahn TG, Pirrotta V. Characteristic low density and shear sensitivity of cross-linked chromatin containing polycomb complexes. Mol Cell Biol 2005; 25:432–439.PubMedCrossRefGoogle Scholar
  76. 76.
    Mohd-Sarip A, van der Knaap JA, Wyman C et al. Architecture of a polycomb nucleoprotein complex. Mol Cell 2006; 24:91–100.PubMedCrossRefGoogle Scholar
  77. 77.
    Negre N, Hennetin J, Sun LV et al. Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol 2006; 4:e170.PubMedCrossRefGoogle Scholar
  78. 78.
    Schwartz YB, Kahn TG, Nix DA et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 2006; 38:700–705.PubMedCrossRefGoogle Scholar
  79. 79.
    Kwong C, Adryan B, Bell I et al. Stability and dynamics of polycomb target sites in Drosophila development. PLoS Genet 2008; 4:e1000178.PubMedCrossRefGoogle Scholar
  80. 80.
    Busturia A, Wightman CD, Sakonju S. A silencer is required for maintenance of transcriptional repression throughout Drosophila development. Development 1997; 124:4343–4350.PubMedGoogle Scholar
  81. 81.
    Beuchle D, Struhl G, Muller J. Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 2001; 128:993–1004.PubMedGoogle Scholar
  82. 82.
    Bantignies F, Grimaud C, Lavrov S et al. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 2003; 17:2406–2420.PubMedCrossRefGoogle Scholar
  83. 83.
    Vazquez J, Muller M, Pirrotta V et al. The Mcp Element Mediates Stable Long-Range Chromosome-Chromosome Interactions in Drosophila. Mol Biol Cell 2006; 17:2158–2165.PubMedCrossRefGoogle Scholar
  84. 84.
    Muller M, Hagstrom K, Gyurkovics H et al. The mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics 1999; 153:1333–1356.PubMedGoogle Scholar
  85. 85.
    Sigrist CJ, Pirrotta V. Chromatin insulator elements block the silencing of a target gene by the Drosophila polycomb response element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics 1997; 147:209–221.PubMedGoogle Scholar
  86. 86.
    Taillebourg E, Dura JM. A novel mechanism for P element homing in Drosophila. Proc Natl Acad Sci USA 1999; 96:6856–6861.PubMedCrossRefGoogle Scholar
  87. 87.
    Buchenau P, Hodgson J, Strutt H et al. The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J Cell Biol 1998; 141:469–481.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang L, Brown JL, Cao R et al. Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 2004; 14:637–646.PubMedCrossRefGoogle Scholar
  89. 89.
    Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15:57–67.PubMedCrossRefGoogle Scholar
  90. 90.
    Caretti G, Di Padova M, Micales B et al. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 2004; 18:2627–2638.PubMedCrossRefGoogle Scholar
  91. 91.
    Tolhuis B, Muijrers I, de Wit E et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 2006; 38:694–699.PubMedCrossRefGoogle Scholar
  92. 92.
    Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 2004; 38:413–443.PubMedCrossRefGoogle Scholar
  93. 93.
    Poux S, McCabe D, Pirrotta V. Recruitment of components of Polycomb Group chromatin complexes in Drosophila. Development 2001; 128:75–85.PubMedGoogle Scholar
  94. 94.
    Mulholland NM, King IF, Kingston RE. Regulation of polycomb group complexes by the sequence-specific DNA binding proteins Zeste and GAGA. Genes Dev 2003; 17:2741–2746.PubMedCrossRefGoogle Scholar
  95. 95.
    Americo J, Whiteley M, Brown JL et al. A complex array of DNA-binding proteins required for pairing-sensitive silencing by a polycomb group response element from the Drosophila engrailed gene. Genetics 2002; 160:1561–1571.PubMedGoogle Scholar
  96. 96.
    Kozma G, Bender W, Sipos L. Replacement of a Drosophila Polycomb response element core and in situ analysis of its DNA motifs. Mol Genet Genomics 2008; 279:595–603.PubMedCrossRefGoogle Scholar
  97. 97.
    Boyer LA, Plath K, Zeitlinger J et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441:349–353.PubMedCrossRefGoogle Scholar
  98. 98.
    Kuzmichev A, Nishioka K, Erdjument-Bromage H et al. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 2002; 16:2893–2905.PubMedCrossRefGoogle Scholar
  99. 99.
    Bernstein E, Duncan EM, Masui O et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 2006; 26:2560–2569.PubMedCrossRefGoogle Scholar
  100. 100.
    Hagstrom K, Muller M, Schedl P. A Polycomb and GAGA dependent silencer adjoins the Fab-7 boundary in the Drosophila bithorax complex. Genetics 1997; 146(4):1365–1380.PubMedGoogle Scholar
  101. 101.
    Hodgson JW, Argiropoulos B, Brock HW. Site-specific recognition of a 70-base-pair element containing d(GA)(n) repeats mediates bithoraxoid polycomb group response element-dependent silencing. Mol Cell Biol 2001; 21:4528–4543.PubMedCrossRefGoogle Scholar
  102. 102.
    Schweinsberg S, Hagstrom K, Gohl D et al. The enhancer-blocking activity of the Fab-7 boundary from the Drosophila bithorax complex requires GAGA-factor-binding sites. Genetics 2004; 168:1371–1384.PubMedCrossRefGoogle Scholar
  103. 103.
    Beisel C, Buness A, Roustan-Espinosa IM et al. Comparing active and repressed expression states of genes controlled by the Polycomb/Trithorax group proteins. Proc Natl Acad Sci USA 2007; 104:16615–16620.PubMedCrossRefGoogle Scholar
  104. 104.
    Blastyak A, Mishra RK, Karch F et al. Efficient and specific targeting of Polycomb group proteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Mol Cell Biol 2006; 26:1434–1444.PubMedCrossRefGoogle Scholar
  105. 105.
    Brown JL, Grau DJ, DeVido SK et al. An Sp1/KLF binding site is important for the activity of a Polycomb group response element from the Drosophila engrailed gene. Nucleic Acids Res 2005; 33:5181–5189.PubMedCrossRefGoogle Scholar
  106. 106.
    Biggin MD, Tjian R. Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 1988; 53:699–711.PubMedCrossRefGoogle Scholar
  107. 107.
    Mohd-Sarip A, Venturini F, Chalkley GE et al. Pleiohomeotic can link polycomb to DNA and mediate transcriptional repression. Mol Cell Biol 2002; 22:7473–7483.PubMedCrossRefGoogle Scholar
  108. 108.
    Kal AJ, Mahmoudi T, Zak NB et al. The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev 2000; 14:1058–1071.PubMedGoogle Scholar
  109. 109.
    Saurin AJ, Shao Z, Erdjument-Bromage H et al. A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 2001; 412:655–660.PubMedCrossRefGoogle Scholar
  110. 110.
    Dejardin J, Cavalli G. Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO J 2004; 23:857–868.PubMedCrossRefGoogle Scholar
  111. 111.
    Hur MW, Laney JD, Jeon SH et al. Zeste maintains repression of Ubx transgenes: support for a new model of Polycomb repression. Development 2002; 129:1339–1343.PubMedGoogle Scholar
  112. 112.
    Wang YJ, Brock HW. Polyhomeotic stably associates with molecular chaperones Hsc4 and Droj2 in Drosophila Kc1 cells. Dev Biol 2003; 262:350–360.PubMedCrossRefGoogle Scholar
  113. 113.
    Dellino GI, Schwartz YB, Farkas G et al. Polycomb silencing blocks transcription initiation. Mol Cell 2004; 13:887–893.PubMedCrossRefGoogle Scholar
  114. 114.
    Reinberg D, Sims RJ 3rd. de FACTo nucleosome dynamics. J Biol Chem 2006; 281:23297–23301.PubMedCrossRefGoogle Scholar
  115. 115.
    Zhou W, Zhu P, Wang J et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 2008; 29:69–80.PubMedCrossRefGoogle Scholar
  116. 116.
    Stock JK, Giadrossi S, Casanova M et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 2007; 9:1428–1435.PubMedCrossRefGoogle Scholar
  117. 117.
    Kouzarides T. Chromatin modifications and their function. Cell 2007; 128:693–705.PubMedCrossRefGoogle Scholar
  118. 118.
    Arrigoni R, Alam SL, Wamstad JA et al. The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett 2006; 580:6233–6241.PubMedCrossRefGoogle Scholar
  119. 119.
    Bejarano F, Gonzalez I, Vidal M et al. The Drosophila RYBP gene functions as a Polycomb-dependent transcriptional repressor. Mech Dev 2005; 122:1118–1129.PubMedCrossRefGoogle Scholar
  120. 120.
    Trimarchi JM, Fairchild B, Wen J et al. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc Natl Acad Sci USA 2001; 98:1519–1524.PubMedCrossRefGoogle Scholar
  121. 121.
    Courel M, Friesenhahn L, Lees JA. E2f6 and Bmi1 cooperate in axial skeletal development. Dev Dyn 2008; 237:1232–1242.PubMedCrossRefGoogle Scholar
  122. 122.
    Ogawa H, Ishiguro K, Gaubatz S et al. A complex with chromatin modifiers that occupies E2F-and Myc-responsive genes in G0 cells. Science 2002; 296:1132–1136.PubMedCrossRefGoogle Scholar
  123. 123.
    Attwooll C, Oddi S, Cartwright P et al. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J Biol Chem 2005; 280:1199–1208.PubMedCrossRefGoogle Scholar
  124. 124.
    Petruk S, Sedkov Y, Riley KM et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 2006; 127:1209–1221.PubMedCrossRefGoogle Scholar
  125. 125.
    Smith ST, Petruk S, Sedkov Y et al. Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 2004; 6:162–167.PubMedCrossRefGoogle Scholar
  126. 126.
    Eissenberg JC, Shilatifard A, Dorokhov N et al. Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment. Mol Genet Genomics 2007; 277:101–114.PubMedCrossRefGoogle Scholar
  127. 127.
    Gregory GD, Vakoc CR, Rozovskaia T et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol 2007; 27:8466–8479.PubMedCrossRefGoogle Scholar
  128. 128.
    Klymenko T, Muller J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep 2004; 5:373–377.PubMedCrossRefGoogle Scholar
  129. 129.
    Srinivasan S, Armstrong JA, Deuring R et al. The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 2005; 132:1623–1635.PubMedCrossRefGoogle Scholar
  130. 130.
    Ali JY, Bender W. Cross-regulation among the polycomb group genes in Drosophila melanogaster. Mol Cell Biol 2004; 24:7737–7747.PubMedCrossRefGoogle Scholar
  131. 131.
    Cho YS, Kim EJ, Park UH et al. Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem 2006; 281:17588–17598.PubMedCrossRefGoogle Scholar
  132. 132.
    Kumar S, Jayaraman K, Panchanathan S et al. BEST: a novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development. Genetics 2002; 162:2037–2047.PubMedGoogle Scholar
  133. 133.
    Ringrose L, Ehret H, Paro R. Distinct contributions of histone H3 lysine 9 and 27 methylation to locus-specific stability of polycomb complexes. Mol Cell 2004; 16:641–653.PubMedCrossRefGoogle Scholar
  134. 134.
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16:6–21.PubMedCrossRefGoogle Scholar
  135. 135.
    Vire E, Brenner C, Deplus R et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439:871–874.PubMedCrossRefGoogle Scholar
  136. 136.
    Hernandez-Munoz I, Lund AH, van der Stoop P et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci USA 2005; 102:7635–7640.PubMedCrossRefGoogle Scholar
  137. 137.
    Mohn F, Weber M, Rebhan M et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 2008; 30:755–766.PubMedCrossRefGoogle Scholar
  138. 138.
    Negishi M, Saraya A, Miyagi S et al. Bmi1 cooperates with Dnmt1-associated protein 1 in gene silencing. Biochem Biophys Res Commun 2007; 353:992–998.PubMedCrossRefGoogle Scholar
  139. 139.
    Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new corepressor, DMAP1, to form a complex at replication foci. Nat Genet 2000; 25:269–277.PubMedCrossRefGoogle Scholar
  140. 140.
    Lyko F, Ramsahoye BH, Jaenisch R. DNA methylation in Drosophila melanogaster. Nature 2000; 408:538–540.PubMedCrossRefGoogle Scholar
  141. 141.
    Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 2006; 439:430–436.PubMedCrossRefGoogle Scholar
  142. 142.
    Schwendemann A, Lehmann M. Pipsqueak and GAGA factor act in concert as partners at homeotic and many other loci. Proc Natl Acad Sci USA 2002; 99:12883–12888.PubMedCrossRefGoogle Scholar
  143. 143.
    Gullerova M, Proudfoot NJ. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 2008; 132:983–995.PubMedCrossRefGoogle Scholar
  144. 144.
    Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA 2006; 103:6428–6435.PubMedCrossRefGoogle Scholar
  145. 145.
    Hake SB, Garcia BA, Duncan EM et al. Expression patterns and posttranslational modifications associated with mammalian histone H3 variants. J Biol Chem 2006; 281:559–568.PubMedCrossRefGoogle Scholar
  146. 146.
    Janicki SM, Tsukamoto T, Salghetti SE et al. From silencing to gene expression: real-time analysis in single cells. Cell 2004; 116:683–698.PubMedCrossRefGoogle Scholar
  147. 147.
    Zhang Z, Shibahara K, Stillman B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 2000; 408(6809):221–225.PubMedCrossRefGoogle Scholar
  148. 148.
    Tagami H, Ray-Gallet D, Almouzni G et al. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004; 116:51–61.PubMedCrossRefGoogle Scholar
  149. 149.
    Ng RK, Gurdon JB. Epigenetic inheritance of cell differentiation status. Cell Cycle 2008; 7(9):1173–1177.PubMedGoogle Scholar
  150. 150.
    Ng RK, Gurdon JB. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 2008; 10:102–109.PubMedCrossRefGoogle Scholar
  151. 151.
    Yamamoto Y, Girard F, Bello B et al. The cramped gene of Drosophila is a member of the Polycomb-group and interacts with mus209, the gene encoding Proliferating Cell Nuclear Antigen. Development 1997; 124:3385–3394.PubMedGoogle Scholar
  152. 152.
    Fanti L, Perrini B, Piacentini L et al. The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma 2008; 117:25–39.PubMedCrossRefGoogle Scholar
  153. 153.
    Fang J, Chen T, Chadwick B et al. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 2004; 279:52812–52815.PubMedCrossRefGoogle Scholar
  154. 154.
    Mak W, Baxter J, Silva J et al. Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol 2002; 12:1016–1020.PubMedCrossRefGoogle Scholar
  155. 155.
    Pasini D, Hansen KH, Christensen J et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev 2008; 22:1345–1355.PubMedCrossRefGoogle Scholar
  156. 156.
    Ficz G, Heintzmann R, Arndt-Jovin DJ. Polycomb group protein complexes exchange rapidly in living Drosophila. Development 2005; 132:3963–3976.PubMedCrossRefGoogle Scholar
  157. 157.
    Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125:301–313.PubMedCrossRefGoogle Scholar
  158. 158.
    Sustar A, Schubiger G. A transient cell cycle shift in Drosophila imaginal disc cells precedes multipotency. Cell 2005; 120:383–393.PubMedCrossRefGoogle Scholar
  159. 159.
    McConnell SK, Kaznowski CE. Cell cycle dependence of laminar determination in developing neocortex. Science 1991; 254:282–285.PubMedCrossRefGoogle Scholar
  160. 160.
    Ambros V. Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. Development 1999; 126:1947–1956.PubMedGoogle Scholar
  161. 161.
    Ohsugi K, Gardiner DM, Bryant SV. Cell cycle length affects gene expression and pattern formation in limbs. Dev Biol 1997; 189:13–21.PubMedCrossRefGoogle Scholar
  162. 162.
    Klebes A, Sustar A, Kechris K et al. Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 2005; 132:3753–3765.PubMedCrossRefGoogle Scholar
  163. 163.
    Lee N, Maurange C, Ringrose L et al. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 2005; 438:234–237.PubMedCrossRefGoogle Scholar
  164. 164.
    McClure KD, Schubiger G. A screen for genes that function in leg disc regeneration in Drosophila melanogaster. Mech Dev 2008; 125:67–80.PubMedCrossRefGoogle Scholar
  165. 165.
    Gregoire D, Brodolin K, Mechali M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep 2006; 7:812–816.PubMedGoogle Scholar
  166. 166.
    Norio P. DNA replication: the unbearable lightness of origins. EMBO Rep 2006; 7:779–781.PubMedCrossRefGoogle Scholar
  167. 167.
    Fisher D, Mechali M. Vertebrate HoxB gene expression requires DNA replication. EMBO J 2003; 22:3737–3748.PubMedCrossRefGoogle Scholar
  168. 168.
    Hartl T, Boswell C, Orr-Weaver TL et al. Developmentally regulated histone modifications in Drosophila follicle cells: initiation of gene amplification is associated with histone H3 and H4 hyperacetylation and H1 phosphorylation. Chromosoma 2007; 116:197–214.PubMedCrossRefGoogle Scholar
  169. 169.
    Luo L, Yang X, Takihara Y et al. The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature 2004; 427:749–753.PubMedCrossRefGoogle Scholar
  170. 170.
    Wohlschlegel JA, Dwyer BT, Dhar SK et al. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 2000; 290:2309–2312.PubMedCrossRefGoogle Scholar
  171. 171.
    Ohtsubo M, Yasunaga S, Ohno Y et al. Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA 2008; 105:10396–10401.PubMedCrossRefGoogle Scholar
  172. 172.
    Seo S, Herr A, Lim JW et al. Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 2005; 19:1723–1734.PubMedCrossRefGoogle Scholar
  173. 173.
    Park IK, Qian D, Kiel M et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423:302–305.PubMedCrossRefGoogle Scholar
  174. 174.
    Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423:255–260.PubMedCrossRefGoogle Scholar
  175. 175.
    Dimri GP, Martinez JL, Jacobs JJ et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 2002; 62:4736–4745.PubMedGoogle Scholar
  176. 176.
    Molofsky AV, Pardal R, Iwashita T et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003; 425:962–967.PubMedCrossRefGoogle Scholar
  177. 177.
    Rajasekhar VK, Begemann M. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 2007; 25:2498–2510.PubMedCrossRefGoogle Scholar
  178. 178.
    Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125:315–326.PubMedCrossRefGoogle Scholar
  179. 179.
    Azuara V, Perry P, Sauer S et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006; 8:532–538.PubMedCrossRefGoogle Scholar
  180. 180.
    Mikkelsen TS, Ku M, Jaffe DB et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007; 448:553–560.PubMedCrossRefGoogle Scholar
  181. 181.
    Roh TY, Cuddapah S, Cui K et al. The genomic landscape of histone modifications in human T-cells. Proc Natl Acad Sci USA 2006; 103:15782–15787.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Samantha Beck
    • 1
  • Floria Faradji
    • 2
  • Hugh Brock
    • 1
  • Frédérique Peronnet
    • 2
  1. 1.Molecular Epigenetics Group Department of Zoology Life Sciences CenterUniversity of British ColumbiaVancouverCanada
  2. 2.Developmental BiologyPierre and Marie Curie UniversityParisFrance

Personalised recommendations