Hox Genes pp 145-153 | Cite as

Hox Genes and Brain Development in Drosophila

  • Heinrich Reichert
  • Bruno Bello
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 689)


Hox genes are prominently expressed in the developing brain and ventral ganglia of Drosophila. In the embryonic brain, the Hox genes labial and Deformed are essential for the establishment of regionalized neuronal identity; in their absence cells are generated in the brain but fail to acquire appropriate neuronal features. Genetic analyses reveal that Hox proteins are largely equivalent in their action in embryonic brain development and that their expression is under the control of cross-regulatory interactions among Hox genes that are similar to those found in embryogenesis of trunk segments. Hox genes have a different role in postembryonic brain development. During the larval phase of CNS development, reactivation of specific Hox genes terminates neural proliferation by induction of apoptotic cell death in neural stem cell-like progenitors called neuroblasts. This reactivation process is tightly controlled by epigenetic mechanisms requiring the Polycomb group of genes. Many features of Hox gene action in Drosophila brain development are evolutionarily conserved and are manifest in brain development of vertebrates.


Embryonic Brain Central Nervous System Development Bilaterian Animal Neuronal Identity Ventral Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell 1992; 68(2):283–302.PubMedCrossRefGoogle Scholar
  2. 2.
    Manak JR, Scott MP. A class act: conservation of homeodomain protein functions. Dev Suppl 1994:61–77.Google Scholar
  3. 3.
    Carroll SB. Homeotic genes and the evolution of arthropods and chordates. Nature 1995; 376(6540):479–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Mann RS. Why are Hox genes clustered? Bioessays 1997; 19(8):661–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Technau GM, Berger C, Urbach R. Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev Dyn 2006; 235(4):861–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Younossi-Hartenstein A, Nassif C, Green P et al. Early neurogenesis of the Drosophila brain. J Comp Neurol 1996; 370(3):313–29.PubMedCrossRefGoogle Scholar
  7. 7.
    Reichert H, Boyan G. Building a brain: developmental insights in insects. Trends Neurosci 1997; 20(6):258–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Hirth F, Hartmann B, Reichert H. Homeotic gene action in embryonic brain development of Drosophila. Development 1998; 125(9):1579–89.PubMedGoogle Scholar
  9. 9.
    Urbach R, Technau GM. Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 2003a; 130(16):3621–37.CrossRefGoogle Scholar
  10. 10.
    Sprecher SG, Reichert H, Hartenstein V. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain. Gene Expr Patterns 2007; 7(5):584–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaufman TC, Seeger MA, Olsen G. Molecular and genetic organization of the Antennapedia gene complex of Drosophila melanogaster. Adv Genet 1990; 27:309–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Hirth F, Loop T, Egger B et al. Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila. Development 2001; 128(23):4781–88.PubMedGoogle Scholar
  13. 13.
    Duboule D, Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994; 10(10):358–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Graba Y, Aragnol D, Pradel J. Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays 1997; 19(5):379–88.PubMedCrossRefGoogle Scholar
  15. 15.
    Mann RS, Morata G. The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 2000; 16:243–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Mann RS, Chan SK. Extra specificity from extradenticle: the partnership between HOX and PBX/ EXD homeodomain proteins. Trends Genet 1996; 12(7):258–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Pinsonneault J, Florence B, Vaessin H et al. A model for extradenticle function as a switch that changes HOX proteins from repressors to activators. EMBO J 1997; 16(8):2032–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Mann RS, Affolter M. Hox proteins meet more partners. Curr Opin Genet Dev 1998; 8(4):423–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Ryoo HD, Marty T, Casares F et al. Regulation of Hox target genes by a DNA bound Homothorax/ Hox/Extradenticle complex. Development 1999; 126(22):5137–48.PubMedGoogle Scholar
  20. 20.
    Miller DF, Rogers BT, Kalkbrenner A et al. Cross-regulation of Hox genes in the Drosophila melanogaster embryo. Mech Dev 2001; 102(1–2):3–16.PubMedCrossRefGoogle Scholar
  21. 21.
    Nagao T, Endo K, Kawauchi H et al. Patterning defects in the primary axonal scaffolds caused by the mutations of the extradenticle and homothorax genes in the embryonic Drosophila brain. Dev Genes Evol 2000; 210(6):289–99.PubMedCrossRefGoogle Scholar
  22. 22.
    Sprecher SG, Müller M, Kammermeier L et al. Hox gene cross-regulatory interactions in the embryonic brain of Drosophila. Mech Dev 2004; 121(6):527–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Skeath JB, Thor S. Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 2003; 13(1):8–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Urbach R, Technau GM. Segment polarity and DV patterning gene expression reveals segmental organization of the Drosophila brain. Development 2003b; 130(16):3607–20.CrossRefGoogle Scholar
  25. 25.
    Urbach R, Volland D, Seibert J et al. Segment-specific requirements for dorsoventral patterning genes during early brain development in Drosophila. Development 2006; 133(21):4315–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Sprecher SG, Urbach R, Technau GM et al. The columnar gene vnd is required for tritocerebral neuromere formation during embryonic brain development of Drosophila. Development 2006; 133(21):4331–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Prokop A, Technau GM. The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development 1991; 111(1):79–88.PubMedGoogle Scholar
  28. 28.
    Truman JW, Bate M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 1988; 125(1):145–57.PubMedCrossRefGoogle Scholar
  29. 29.
    Duboule D. Vertebrate Hox genes and proliferation: an alternative pathway to homeosis? Curr Opin Genet Dev 1995; 5(4):525–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Maurange C, Gould AP. Brainy but not too brainy: starting and stopping neuroblast divisions in Drosophila. Trends Neurosci 2005; 28(1):30–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Bello BC, Hirth F, Gould AP. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 2003 23; 37(2):209–19.PubMedCrossRefGoogle Scholar
  32. 32.
    Orlando V. Polycomb, epigenomes and control of cell identity. Cell 2003; 112(5):599–606.PubMedCrossRefGoogle Scholar
  33. 33.
    Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 2007; 134(2):223–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Bello B, Holbro N, Reichert H. Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila. Development 2007; 134(6):1091–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Kourakis MJ, Master VA, Lokhorst DK et al. Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Dev Biol 1997; 190(2):284–300.PubMedCrossRefGoogle Scholar
  36. 36.
    Lowe CJ, Wu M, Salic A et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 2003; 113(7):853–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilkinson DG, Bhatt S, Cook M et al. Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 1989; 341(6241):405–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Hunt P, Krumlauf R. Deciphering the Hox code: clues to patterning branchial regions of the head. Cell 1991; 66(6):1075–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Gavalas A, Studer M, Lumsden A et al. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998; 125(6):1123–36.PubMedGoogle Scholar
  40. 40.
    Studer M, Gavalas A, Marshall H et al. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 1998; 125(6):1025–36.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations