Skip to main content

Catalytic Wastewater Treatment Using Pillared Clays

  • Chapter
  • First Online:
Pillared Clays and Related Catalysts

Abstract

After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    CAS  Google Scholar 

  2. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    CAS  Google Scholar 

  3. Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606

    CAS  Google Scholar 

  4. Kwon S, Fan M, Cooper AT, Yang H (2008) Photocatalytic applications of micro- and nano-TiO2 in environmental engineering. Crit Rev Environ Sci Tech 38:197–226

    CAS  Google Scholar 

  5. Bhargava SK, Tardio J, Prasad J, Föger K, Akolekar DB, Grocott SC (2006) Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res 45:1221–1258

    CAS  Google Scholar 

  6. Centi G, Perathoner S (2005) Use of solid catalysts in promoting water treatment and remediation technologies. In: Spivey JJ (ed) Catalysis, vol 18. Royal Society of Chemistry Publishing, Cambridge, UK, pp 46–71

    Google Scholar 

  7. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597

    CAS  Google Scholar 

  8. Oliviero L, Barbier J Jr, Duprez D (2003) Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media. Appl Catal B: Environ 40:163–184

    CAS  Google Scholar 

  9. Imamura S (1999) Catalytic and noncatalytic wet oxidation. Ind Eng Chem Res 38:1743–1753

    CAS  Google Scholar 

  10. Liu Z-h, Kanjo Y, Mizutani S (2009) Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment – physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407:731–748

    CAS  Google Scholar 

  11. Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642

    CAS  Google Scholar 

  12. Rios GM, Belleville MP, Paolucci-Jeanjean D, Sanchez J (2009) Membrane technologies at the service of sustainable development through process intensification. In: Centi G, Trifiró F, Perathoner S, Cavani F (eds) Sustainable industrial processes, Chapter 4. Wiley, Weinheim, Germany, pp 257–278

    Google Scholar 

  13. Centi G, van Santen RA (2007) Catalysis for renewables. Wiley, Weinheim, Germany

    Google Scholar 

  14. Centi G, Perathoner S (2003) Novel catalyst design for multiphase reactions. Catal Today 79–80:3–13

    Google Scholar 

  15. Centi G, Perathoner S (1999) Recycle rinse water: problems and opportunities. Catal Today 53:11–21

    CAS  Google Scholar 

  16. Centi G, Gotti M, Perathoner S, Pinna F (2000) Rinse water purification using solid regenerable catalytic adsorbents. Catal Today 55:51–60

    CAS  Google Scholar 

  17. Marco A, Esplugas S, Saum G (1997) How and why combine chemical and biological processes for wastewater treatment. 3Water Sci Technol 35:321–327

    CAS  Google Scholar 

  18. Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Micropor Mesopor Mater 107:3–15

    CAS  Google Scholar 

  19. Gil A, Korili SA, Vicente MA (2008) Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catal Rev Sci Eng 50(2):153–221

    CAS  Google Scholar 

  20. Ding Z, Kloprogge JT, Frost RL, Lu GQ, Zhu HY (2001) Porous clays and pillared clays-based catalysts. Part 2: a review of the catalytic and molecular sieve applications. J Porous Mater 8:273–293

    CAS  Google Scholar 

  21. Cheng S (1999) From layer compounds to catalytic materials. Catal Today 49:303–312

    CAS  Google Scholar 

  22. Pinnavaia TJ (1983) Intercalated clay catalysts. Science 220:365–371

    CAS  Google Scholar 

  23. Figueras F (1988) Pillared clays as catalysts. Catal Rev Sci Eng 30:457–499

    CAS  Google Scholar 

  24. Suty H, De Traversay C, Cost M (2004) Applications of advanced oxidation processes: present and future. Water Sci Technol 49:227–233

    CAS  Google Scholar 

  25. Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Tech Biotechnol 72:289–302

    CAS  Google Scholar 

  26. Neyens E, Baeyens J, Weemaes M, De Heyder B (2003) Pilot-scale peroxidation (H2O2) of sewage sludge. J Hazard Mater 98:91–106

    CAS  Google Scholar 

  27. Centi G, Perathoner S, Romeo G (2001) Fe/MFI as a new heterogeneous Fenton-type catalyst in the treatment of wastewater from agroindustrial processes. Stud Surf Sci Catal 135:5156–5163

    CAS  Google Scholar 

  28. Centi G, Perathoner S, Torre T, Verduna MG (2000) Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts. Catal Today 55:61–69

    CAS  Google Scholar 

  29. Perathoner S, Centi G (2005) Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams. Top Catal 33:207–224

    CAS  Google Scholar 

  30. Chakinala AG, Gogate PR, Burgess AE, Bremner DH (2009) Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem Eng J 152:498–502

    CAS  Google Scholar 

  31. Li D, Qu J (2009) The progress of catalytic technologies in water purification: a review. J Environ Sci 21:713–719

    CAS  Google Scholar 

  32. Guélou E, Barrault J, Fournier J, Tatibouët J-M (2003) Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Appl Catal B: Environ 44:1–8

    Google Scholar 

  33. Carriazo JG, Guelou E, Barrault J, Tatibouët J-M, Moreno S (2003) Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Appl Clay Sci 22:303–308

    CAS  Google Scholar 

  34. Sirtori C, Zapata A, Oller I, Gernjak W, Agüera A, Malato S (2009) Solar photo-Fenton as finishing step for biological treatment of a pharmaceutical wastewater. Environ Sci Technol 43:1185–1191

    CAS  Google Scholar 

  35. Andreozzi R, Canterino M, Di Somma I, Lo Giudice R, Marotta R, Pinto G, Pollio A (2008) Effect of combined physico-chemical processes on the phytotoxicity of olive mill wastewaters. Water Res 42:1684–1692

    CAS  Google Scholar 

  36. Kanmani S, Raja A (2008) Pilot plant treatment of distillery wastewater by solar photo-Fenton process. Indian J Environ Prot 28:218–226

    CAS  Google Scholar 

  37. Pérez M, Torrades F, Domènech X, Peral J (2002) Fenton and photo-Fenton oxidation of textile effluents. Water Res 36:2703–2710

    Google Scholar 

  38. Bauer R, Fallmann H (1997) The photo-Fenton oxidation – a cheap and efficient wastewater treatment method. Res Chem Intermediates 23:341–354

    CAS  Google Scholar 

  39. Kiwi J, Pulgarin C, Peringer P (1994) Effect of Fenton and photo-Fenton reactions on the degradation and biodegradability of 2 and 4-nitrophenols in water treatment. Appl Catal B Environ 3:335–350

    Google Scholar 

  40. Jain DM (2005) Photo Fenton degradation for environmental application. J Ind Pollut Control 21:181–194

    CAS  Google Scholar 

  41. Malato S, Fernández–Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview trends. Catal Today 147:1–59

    CAS  Google Scholar 

  42. Ding Z, Zhu HY, Lu GQ, Greenfield PF (1999) Photocatalytic properties of titania pillared clays by different drying methods. J Colloid Interface Sci 209:193–199

    CAS  Google Scholar 

  43. Li J, Chen C, Zhao J, Zhu H, Ding Z (2002) Photodegradation of dye pollutants on TiO2 pillared bentonites under UV light irradiation. Sci China B 45:445–448

    CAS  Google Scholar 

  44. Ooka C, Yoshida H, Suzuki K, Hattori T (2004) Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Micropor Mesopor Mater 67:143–150

    CAS  Google Scholar 

  45. Romero A, Dorado F, Asencio I, García PB, Valverde JL (2006) Ti-pillared clays: synthesis and general characterization. Clays Clay Miner 54:737–747

    CAS  Google Scholar 

  46. Damardji B, Khalaf H, Duclaux L, David B (2009) Preparation of TiO2-pillared montmorillonite as photocatalyst. Part II. Photocatalytic degradation of a textile azo dye. Appl Clay Sci 45:98–104

    CAS  Google Scholar 

  47. Danis TG, Albanis TA, Petrakis DE, Pomonis PJ (1998) Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminum phosphates. Water Res 32:295–302

    CAS  Google Scholar 

  48. Wibulswas R, White D, Rautiu R (1998) Removal of humic substances from water by alumina-based pillared clays. Environ Technol 19:627–632

    CAS  Google Scholar 

  49. Tahani A, Karroua M, El Farissi M, Levitz P, Van Damme H, Bergaya F, Margulies L (1999) Adsorption of phenol and its chlorine derivatives on PILCS and organo-PILCS. J Chimie Physique et de Physico Chimie Biol 96:464–469

    CAS  Google Scholar 

  50. Konstantinou IK, Albanis TA, Petrakis DE, Pomonis PJ (2000) Removal of herbicides from aqueous solutions by adsorption on Al-pillared clays, Fe–Al pillared clays and mesoporous alumina aluminum phosphates. Water Res 34:3123–3136

    CAS  Google Scholar 

  51. Bouras O, Houari M, Khalaf H (2001) Using of surfactant modified Fe-pillared bentonite for the removal of pentachlorophenol from aqueous stream. Environ Technol 22(1):69–74

    CAS  Google Scholar 

  52. Zeng XQ, Liu WP (2005) Adsorption of direct green B on mixed hydroxyl-Fe–Al pillared montmorillonite with large basal spacing. J Environ Sci 17:159–162

    CAS  Google Scholar 

  53. Ortiz-Polo A, Richards-Uribe RM, Otazo-Sánchez EM, Prieto-García F, Hernández-Ávila J, Acevedo-Sandoval O, Gordillo-Martínez A (2008) New organo-inorganic materials for water contaminants remediation. In: Barbé C, Laine RM, Sanchez C, Schubert U (eds) Organic/Inorganic hybrid materials-2007, Mater Res Soc Symp Proc, Volume 1007. Warrendale, PA, pp.1007-S04-38.

    Google Scholar 

  54. Guerra DL, Airoldi C, Lemos VP, Angélica RS (2008) Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pillared clays from the Brazilian Amazon region for zinc cation removal. J Hazard Mater 155:230–242

    CAS  Google Scholar 

  55. Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci 140:114–131

    CAS  Google Scholar 

  56. Karamanis D, Assimakopoulos PA (2007) Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions. Water Res 41:1897–1906

    CAS  Google Scholar 

  57. Zhu JX, He HP, Guo JG, Yang D (2002) Recent advances in research on organic pillared montmorillonite. Bull Mineral Petrol Geochem 21:234–237

    Google Scholar 

  58. Srinivasan KR, Fogler HS (1990) Use of inorgano-organo-clays in the removal of priority pollutants from industrial wastewaters: structural aspect. Clays Clay Miner 38:277–286

    CAS  Google Scholar 

  59. Georgakilas V, Gournis D, Petridis D (2001) Organoclay derivatives in the synthesis of macrocycles. Ang Chemie Int Ed 40:4286–4288

    CAS  Google Scholar 

  60. Nakatsuji M, Ishii R, Wang Z-M, Ooi K (2004) Preparation of porous clay minerals with organic–inorganic hybrid pillars using solvent-extraction route. J Colloid Interface Sci 272:158–166

    CAS  Google Scholar 

  61. Bergaya F, Mandalia T, Amigouët P (2005) A brief survey on CLAYPEN and nanocomposites based on unmodified PE and organo-pillared clays. Colloid Polym Sci 283:773–782

    CAS  Google Scholar 

  62. Zhou Q, He HP, Zhu JX, Shen W, Frost RL, Yuan P (2008) Mechanism of p-nitrophenol adsorption from aqueous solution by HDTMA+-pillared montmorillonite – implications for water purification. J Hazard Mater 154:1025–1032

    CAS  Google Scholar 

  63. López-Cortés C, Osorio-Revilla G, Gallardo-Velázquez T, Arellano-Cárdenas S (2008) Adsorption of vapor-phase VOCs (benzene and toluene) on modified clays and its relation with surface properties. Can J Chem 86:305–311

    Google Scholar 

  64. Sasai R, Hotta Y, Itoh H (2008) Preparation of organoclay having titania nano-crystals in interlayer hydrophobic field and its characterization. J Ceram Soc Jpn (Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi) 116:205–211

    CAS  Google Scholar 

  65. Matatov-Meytal YI, Sheintuch M (1998) Catalytic abatement of water pollutants. Ind Eng Chem Res 37:309–326

    CAS  Google Scholar 

  66. Guo J, Al–Dahhan M (2003) Kinetics of wet air oxidation of phenol over a novel catalyst. Ind Eng Chem Res 22:5473–5481

    Google Scholar 

  67. Guo J, Al-Dahhan M (2003) Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind Eng Chem Res 42:2450–2460

    CAS  Google Scholar 

  68. Barrault J, Tatibouët J-M, Papayannakos N (2000) Catalytic wet peroxide oxidation of phenol over pillared clays containing iron or copper species. Comptes Rendus - Series IIC - Chem 3:777–783

    CAS  Google Scholar 

  69. Barrault J, Abdellaoui M, Bouchoule C, Majesté A, Tatibouët J-M, Louloudi A, Papayannakos N, Gangas NH (2000) Catalytic wet peroxide oxidation over mixed (Al–Fe) pillared clays. Appl Catal B: Environ 27:L225–L230

    CAS  Google Scholar 

  70. Guélou E, Barrault J, Fournier J, Tatibouët J-M (2003) Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Appl Catal B: Environ 44:1–8

    Google Scholar 

  71. De Stefanis A, Perez G, Tomlinson AAG, Bergström C (2001) Alkylation process. WO 2001–055061 assigned to Optatech Corp, Finland

    Google Scholar 

  72. Raimondo M, De Stefanis A, Perez G, Tomlinson AAG (1998) PLS vs. zeolites as sorbents and catalysts. 5. Evidence for Brønsted/Lewis acid crossover and high acidity in conversions of C1-3 alcohols in some alumina-pillared smectite clays. Appl Catal A: Gen 171:85–97

    CAS  Google Scholar 

  73. Tomlinson AAG (1998) Characterization of pillared layered structures. J Porous Mater 5:259–274

    CAS  Google Scholar 

  74. Tukac V, Hanika J (1998) Catalytic wet oxidation of substituted phenols in the trickle bed reactor. J Chem Tech Biotechnol 71:262–266

    CAS  Google Scholar 

  75. Ksontinia N, Najjar W, Ghorbel A (2008) Al–Fe pillared clays: synthesis, characterization and catalytic wet air oxidation activity. J Phys Chem Solids 69:1112–1115

    Google Scholar 

  76. Najjar W, Azabou S, Sayadi S, Ghorbel A (2007) Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants. Part I. Reactivity of tyrosol over (Al–Fe) PILC. Appl Catal B: Environ 74:11–18

    CAS  Google Scholar 

  77. Guo J, Al-Dahhan M (2005) Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst. Chem Eng Sci 60:735–746

    CAS  Google Scholar 

  78. Guo J, Al-Dahhan M (2006) Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol. Appl Catal A: Gen 299:175–184

    CAS  Google Scholar 

  79. Barrault J, Bouchoule C, Echachoui K, Frini-Srasra N, Trabelsi M, Bergaya F (1998) Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (AlCu)-pillared clays. Appl Catal B: Environ 15:269–274

    CAS  Google Scholar 

  80. Abdellaoui M, Barrault J, Bouchoule C, Srasra NF, Bergaya F (1999) Catalytic wet peroxide oxidation of phenol over mixed [Al–Cu]-pillared clays. J Chimie Phys et de Physico Chimie Biol 96:419–429

    CAS  Google Scholar 

  81. Barrault J, Bouchoule C, Tatibouët JM, Abdellaoui M, Majesté A, Louloudi I, Papayannakos N, Gangas NH (2000) Catalytic wet peroxide oxidation over mixed (Al–Fe) pillared clays. Stud Surf Sci Catal 130A:749–754

    CAS  Google Scholar 

  82. Tatibouët JM, Guélou E, Fournier J (2005) Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron. Active species and pH effect. Top Catal 33:1–4

    Google Scholar 

  83. Caudo S, Centi G, Genovese C, Perathoner S (2006) Homogeneous versus heterogeneous catalytic reactions to eliminate organics from waste water using H2O2. Top Catal 40:207–219

    CAS  Google Scholar 

  84. Ensing B, Buda F, Baerends EJ (2003) Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H2O2. J Phys Chem A 107:5722–5731

    CAS  Google Scholar 

  85. Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl Catal B: Environ 51:165–170

    CAS  Google Scholar 

  86. Ensing B, Buda F, Blöchl PE, Baerends EJ (2002) A Car–Parrinello study of the formation of oxidizing intermediates from Fenton’s reagent in aqueous solution. Phys Chem Chem Phys 4:3619–3627

    CAS  Google Scholar 

  87. Ensing B, Buda F, Blöchl P, Baerends EJ (2001) Chemical involvement of solvent water molecules in elementary steps of the Fenton oxidation reaction. Ang Chemie 113:2977–2979

    Google Scholar 

  88. Ensing B (2003) Chemistry in water. First principles computer simulations. PhD Thesis, Vrije Universiteit Amsterdam, The Netherlands

    Google Scholar 

  89. Chirchi L, Ghorbel A (2002) Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by H2O2. Appl Clay Sci 21:271–276

    CAS  Google Scholar 

  90. Ramaswamy V, Krishnan MS, Ramaswamy AV (2002) Immobilization and characterization of copper chlorophthalocyanine on alumina-pillared montmorillonite. J Mol Catal A: Chem 181:81–89

    CAS  Google Scholar 

  91. Catrinescu C, Teodosiu C, Macoveanu M, Miehe–Brendlé JL, Dred R (2003) Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res 37:1154–1160

    CAS  Google Scholar 

  92. Mei JG, Yu SM, Cheng J (2004) Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe–Ti–PILC employing microwave irradiation. Catal Comm 5:437–440

    CAS  Google Scholar 

  93. Carriazo J, Guélou E, Barrault J, Tatibouët JM, Molina R, Moreno S (2005) Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe. Water Res 39:3891–3899

    CAS  Google Scholar 

  94. Carriazo JG, Molina R, Moreno S (2008) A study on Al and Al–Ce–Fe pillaring species and their catalytic potential as they are supported on a bentonite. Appl Catal A: Gen 334:168–172

    CAS  Google Scholar 

  95. Molina CB, Casas JA, Zazo JA, Rodríguez JJ (2006) A comparison of Al–Fe and Zr–Fe pillared clays for catalytic wet peroxide oxidation. Chem Eng J 118:29–35

    CAS  Google Scholar 

  96. Luo M, Bowden D, Brimblecombe P (2009) Catalytic property of Fe–Al pillared clay for Fenton oxidation of phenol by H2O2. Appl Catal B: Environ 85:201–206

    CAS  Google Scholar 

  97. Timofeeva MN, Khankhasaeva ST, Chesalov YA, Tsybulya SV, Panchenko VN, Dashinamzhilova ET (2009) Synthesis of Fe,Al-pillared clays starting from the Al,Fe-polymeric precursor: effect of synthesis parameters on textural and catalytic properties. Appl Catal B: Environ 88:127–134

    CAS  Google Scholar 

  98. Timofeeva MN, Khankhasaeva ST, Talsi EP, Panchenko VN, Golovin AV, Dashinamzhilova ET, Tsybulya SV (2009) The effect of Fe/Cu ratio in the synthesis of mixed Fe,Cu,Al-clays used as catalysts in phenol peroxide oxidation. Appl Catal B: Environ 90:618–627

    CAS  Google Scholar 

  99. Tabet D, Saidi M, Houari M, Pichat P, Khalaf H (2006) Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation. J Env Manage 80:342–346

    CAS  Google Scholar 

  100. Herney-Ramirez J, Costa CA, Madeira LM, Mata G, Vicente MA, Rojas-Cervantes ML, López-Peinado AJ, Martín-Aranda RM (2007) Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl Catal B: Environ 71:44–56

    Google Scholar 

  101. Herney-Ramirez J, Lampinen M, Vicente MA, Costa CA, Madeira LM (2008) Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Ind Eng Chem Res 47:284–294

    CAS  Google Scholar 

  102. Achma RB, Ghorbel A, Dafinov A, Medina F (2008) Stability of copper supported pillared clay catalysts during oxidation of model pollutant tyrosol in batch and continuous reactors. Stud Surf Sci Catal 174B:1355–1358

    Google Scholar 

  103. Achma RB, Ghorbel A, Dafinov A, Medina F (2008) Copper-supported pillared clay catalysts for the wet hydrogen peroxide catalytic oxidation of model pollutant tyrosol. Appl Catal A: Gen 349:20–28

    Google Scholar 

  104. Najjar W, Ghorbel A, Perathoner S, Centi G (2008) Oxidation intermediates and reaction pathways of wet hydrogen peroxide oxidation of p-coumaric acid over (Al–Fe)PILC catalyst. Stud Surf Sci Catal 174B:1063–1068

    CAS  Google Scholar 

  105. Kim SC, Kim DS, Oh SS, Lee DK, Yang YK (2002) Catalytic wet oxidation of dyehouse effluents with Cu/Al2O3 and Cu–Al pillared clay. Stud Surf Sci Catal 145:355–358

    Google Scholar 

  106. Kim SC, Lee DK (2004) Preparation of Al–Cu pillared clay catalysts for the catalytic wet oxidation of reactive dyes. Catal Today 97:153–158

    CAS  Google Scholar 

  107. Caudo S, Centi G, Genovese C, Perathoner S (2007) Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production. Appl Catal B: Environ 70:437–446

    CAS  Google Scholar 

  108. Giordano G, Perathoner S, Centi G, De Rosa S, Granato T, Katovic A, Siciliano A, Tagarelli A,Tripicchio F (2007) Wet hydrogen peroxide catalytic oxidation of olive oil mill wastewaters using Cu-zeolite and Cu-pillared clay catalysts. Catal Today 124:240–246

    CAS  Google Scholar 

  109. Caudo S, Genovese C, Perathoner S, Centi G (2008) Copper-pillared clays (Cu-PILC) for agro-food wastewater purification with H2O2. Micropor Mesopor Mater 107:46–57

    CAS  Google Scholar 

  110. Ooka C, Akita S, Ohashi Y, Horiuchi T, Suzuki K, Komai SI, Yoshida H, Hattori T (1999) Crystallization of hydrothermally treated TiO2 pillars in pillared montmorillonite for improvement of the photocatalytic activity. J Mater Chem 9:2943–2952

    CAS  Google Scholar 

  111. Yoshida H, Kawase T, Miyashita Y, Murata C, Ooka C, Hattori T (1999) Effect of hydrothermal treatment of titania-pillared montmorillonite for photocatalytic degradation of dibutyl phthalate in water. Chem Lett 8:715–716

    Google Scholar 

  112. Shimizu KI, Kaneko T, Fujishima T, Kodama T, Yoshida H, Kitayama Y (2002) Selective oxidation of liquid hydrocarbons over photoirradiated TiO2 pillared clays. Appl Catal A: Gen 225:185–191

    CAS  Google Scholar 

  113. Awate SV, Suzuki K (2001) Enhanced adsorption capacity and photo-catalytic oxidative activity of dyes in aqueous medium by hydrothermally treated titania pillared clay. Adsorption 7:319–326

    CAS  Google Scholar 

  114. Li J, Chen C, Zhao J, Zhu H, Ding Z (2002) Photodegradation of dye pollutants on TiO2 pillared bentonites under UV light irradiation. Sci China B 45:445–448

    CAS  Google Scholar 

  115. Pichat P, Khalaf H, Tabet D, Houari M, Saidi M (2005) Ti-montmorillonite as photocatalyst to remove 4-chlorophenol in water and methanol in air. Environ Chem Lett 2:191–194

    CAS  Google Scholar 

  116. Liu S, Yang JH, Choy JH (2006) Microporous SiO2–TiO2 nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange. J Photochem Photobiol A: Chem 179:75–80

    CAS  Google Scholar 

  117. An T, Chen J, Li G, Ding X, Sheng G, Fu J, Mai B, O’Shea KE (2008) Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts. Degradation of decabromodiphenyl ether (BDE 209). Catal Today 139:69–76

    CAS  Google Scholar 

  118. Ding X, An T, Guiying L, Chen J, Sheng G, Jiamo F, Zhao J (2008) Photocatalytic degradation of dimethyl phthalate ester using novel hydrophobic TiO2 pillared montmorillonite photocatalyst. Res Chem Intermediates 34:67–83

    CAS  Google Scholar 

  119. Yang W, Cheng LY, Xue ZL, Guo H, Gao JZ (2008) Preparation of TiO2 pillared montmorillonite photocatalyst and its photocatalytic activity to degradation reaction of acidic fuchsine by sunlight. Spectrosc Spectral Anal (Guang Pu Xue Yu Guang Pu Fen Xi) 28:1122–1125

    CAS  Google Scholar 

  120. Yang X, Zhu H, Liu J, Gao X, Martens WN, Frost RL, Shen Y, Yuan Z (2008) A mesoporous structure for efficient photocatalysts: anatase nanocrystals attached to leached clay layers. Micropor Mesopor Mater 112:32–44

    CAS  Google Scholar 

  121. Xuzhuang Y, Yang D, Huaiyong Z, Jiangwen L, Martins WN, Frost R, Daniel L, Yuenian S (2009) Mesoporous structure with size controllable anatase attached on silicate layers for efficient photocatalysis. J Phys Chem C 113:8243–8248

    Google Scholar 

  122. Zhang G, Ding X, Hu Y, Huang B, Zhang X, Qin X, Zhou J, Xie J (2008) Photocatalytic degradation of 4BS dye by N,S-codoped TiO2 pillared montmorillonite photocatalysts under visible-light irradiation. J Phys Chem C 112:17994–17997

    CAS  Google Scholar 

  123. Damardji B, Khalaf H, Duclaux L, David B (2009) Preparation of TiO2-pillared montmorillonite as photocatalyst. Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. Appl Clay Sci 44:201–205

    CAS  Google Scholar 

  124. Damardji B, Khalaf H, Duclaux L, David B (2009) Preparation of TiO2-pillared montmorillonite as photocatalyst. Part II. Photocatalytic degradation of a textile azo dye. Appl Clay Sci 45:98–104

    CAS  Google Scholar 

  125. Dvininov E, Popovici E, Pode R, Cocheci L, Barvinschi P, Nica V (2009) Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation. J Hazard Mater 167:1050–1056

    CAS  Google Scholar 

  126. Pode R, Popovici E, Vasile A, Cocheci L, Dvininov E (2009) Sorption and photocatalytic degradation of azoic dyes on TiO2-pillared montmorillonitic clay. Revue Roumaine de Chimie 54:313–321

    CAS  Google Scholar 

  127. Ooka C, Yoshida H, Takeuchi S, Maekawa M, Yamada Z, Hattori T (2004) Hydrogen peroxide improving crystallinity of TiO2 nanoparticle in layer compound. Catal Comm 5:49–54

    CAS  Google Scholar 

  128. Yuan XT, Yu J, Liu HZ, Li WJ (2004) Synthesis and characterization of novel organic/inorganic pillared clays. Acta Chimica Sinica 62:1049–1054

    CAS  Google Scholar 

  129. Yan SF, Yu J, Liu HZ, Sun TC (2007) Preparation of Ti-pillared montmorillonite tailored by surfactant. Chin J Process Eng (Guocheng Gongcheng Xuebao) 7:90–94

    CAS  Google Scholar 

  130. Ding X, An T, Li G, Zhang S, Chen J, Yuan J, Zhao H, Chen H, Sheng G, Fu J (2008) Preparation and characterization of hydrophobic TiO2 pillared clay: the effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity. J Colloid Interface Sci 320:501–507

    CAS  Google Scholar 

  131. Li D, Qu J (2009) The progress of catalytic technologies in water purification: a review. J Environ Sci (Beijing, China) 21:713–719

    CAS  Google Scholar 

  132. von Sonntag C (2008) Advanced oxidation processes: mechanistic aspects. Water Sci Technol 58:1015–1021

    Google Scholar 

  133. Litter MI (2005) Introduction to photochemical advanced oxidation processes for water treatment. In: Hutzinger O (ed) Environmental photochemistry. Part II (series The Handbook of Environmental Chemistry), vol 2 M. Springer, Berlin, pp 325–366

    Google Scholar 

  134. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C: Photochem Rev 7:27–144

    Google Scholar 

  135. Jain DM (2005) Photo Fenton degradation for environmental application. J Ind Pollut Control 21:181–194

    CAS  Google Scholar 

  136. Waite TD (2002) Challenges and opportunities in the use of iron in water and wastewater treatment. Rev Environ Sci BioTechnol 1:9–15

    CAS  Google Scholar 

  137. Suty H, De Traversay C, Cost M (2004) Applications of advanced oxidation processes: present and future. Water Sci Technol 49:227–233

    CAS  Google Scholar 

  138. Sum OSN, Feng J, Hu X, Yue PL (2004) Pillared laponite clay-based Fe nanocomposites as heterogeneous catalysts for photo-Fenton degradation of acid black. Chem Eng Sci 59:5269–5275

    CAS  Google Scholar 

  139. Liu Y, Li YM, Wen LH, Li HY (2005)Fe pillared bentonite and photo-catalytic degradation of dye-Orange II. J Funct Mater (Gongneng Cailiao) 36:136–138

    CAS  Google Scholar 

  140. Bobu MM, Siminiceanu I, Lundanes E (2008) Mineralization of two phenyl urea herbicides in water by a heterogeneous photo-Fenton process. Environ Eng Manage J 7:37–40

    CAS  Google Scholar 

  141. Bobu M, Yediler A, Siminiceanu I, Schulte-Hostede S (2008) Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl Catal B: Environ 83:15–23

    CAS  Google Scholar 

  142. De León MA, Castiglioni J, Bussi J, Sergio M (2008) Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process. Catal Today 133–135:600–605

    Google Scholar 

  143. Chen Q, Wu P, Li Y, Zhu N, Dang Z (2009) Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. J Hazard Mater 168:901–908

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siglinda Perathoner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Perathoner, S., Centi, G. (2010). Catalytic Wastewater Treatment Using Pillared Clays. In: Gil, A., Korili, S., Trujillano, R., Vicente, M. (eds) Pillared Clays and Related Catalysts. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6670-4_7

Download citation

Publish with us

Policies and ethics