Use of Large Animal Models for Cardiac Electrophysiology Studies

  • Jason L. Quill
  • Michael D. Eggen
  • Eric S. Richardson


Large animal models can be utilized to recreate many cardiac electrophysiological disease states and procedures and to test new devices and imaging techniques. In this chapter, a brief summary of regulatory principles regarding animal models is presented. Factors for choosing an animal model, such as growth rate, ease of handling, and comparative cardiac anatomy, are detailed, with the cardiac anatomy presented in terms of common electrophysiologic procedures: lead placement, His pacing, and ablation studies. General anesthesia information is then provided, along with common methods of accessing the heart and invasive monitoring techniques. Finally, common electrophysiologic interventions are discussed such as different techniques for creating common pathologies including congestive heart failure models, acute and chronic atrial fibrillation models, ventricular fibrillation, and myocardial infarction (ischemia).


Atrial Fibrillation Pulmonary Vein Cardiac Resynchronization Therapy Coronary Sinus Large Animal Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially funded by Grant Number T32AR007612 from the National Institute of Health.


  1. l.
    NIH Publication Number 08-6436. Medical Research with Animals. Accessed 14 January 2009.
  2. 2.
    Fox JG. Laboratory animal medicine, 2nd ed. San Diego: Academic Press/Elsevier; 2002.Google Scholar
  3. 3.
    Lee JC, Taylor FN, Downing SE. A comparison of ventricular weights and geometry in newborn, young, and adult mammals. J Appl Physiol 1975;38:147–50.PubMedGoogle Scholar
  4. 4.
    Hughes HC. Swine in cardiovascular research. Lab Anim Sci 1986;36:348–50.PubMedGoogle Scholar
  5. 5.
    Hill AJ, Iaizzo PA. Comparative cardiac anatomy. In: Iaizzo PA, editor. Handbook of Cardiac Anatomy, Physiology, and Devices, 2nd ed. New York: Humana Press; 2009.Google Scholar
  6. 6.
    Hearse DJ. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 2000;45:213–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH. Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat 1998;193(Pt 1):105–19.PubMedCrossRefGoogle Scholar
  8. 8.
    Hill AJ, Ahlberg SE, Wilkoff BL, Iaizzo PA. Dynamic obstruction to coronary sinus access: the Thebesian valve. Heart Rhythm 2006;3:1240–1.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson SE, Quill JL, Iaizzo PA. Venous valves within left ventricular coronary veins. J Interv Card Electrophysiol 2008;23:95–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson SE, Hill AJ, Iaizzo PA. Venous valves: unseen obstructions to coronary access. J Interv Card Electrophysiol 2007;19:165–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Frink RJ, Merrick B. The sheep heart: coronary and conduction system anatomy with special reference to the presence of an os cordis. Anat Rec 1974;179:189–200.PubMedCrossRefGoogle Scholar
  12. 12.
    Ryu S, Yamamoto S, Andersen CR, Nakazawa K, Miyake F, James TN. Intramural Purkinje cell network of sheep ventricles as the terminal pathway of conduction system. Anat Rec (Hoboken) 2009;292:12–22.CrossRefGoogle Scholar
  13. 13.
    Berenfeld O, Zaitsev AV. The muscular network of the sheep right atrium and frequency-dependent breakdown of wave propagation. Anat Rec A Discov Mol Cell Evol Biol 2004;280:1053–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Evans HE. The heart and arteries. In: Miller ME, Evans HE, editors. Miller’s anatomy of the dog, 3rd ed. Philadelphia: Saunders; 1993, p. 586.Google Scholar
  15. 15.
    Kalifa J, Tanaka K, Zaitsev AV, et al. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation 2006;113:626–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Chinchoy E, Ujhelyi MR, Hill AJ, Skadsberg ND, Iaizzo PA. The pericardium. In: Iaizzo PA, editor. Handbook of Cardiac Anatomy, Physiology, and Devices. Totowa: Humana Press; 2005, p. 101.CrossRefGoogle Scholar
  17. 17.
    Gross DR. Animal models in cardiovascular research. Boston: Nijhoff; 1985.CrossRefGoogle Scholar
  18. 18.
    Naqvi TZ, Buchbinder M, Zarbatany D, et al. Beating-heart percutaneous mitral valve repair using a transcatheter endovascular suturing device in an animal model. Catheter Cardiovasc Interv 2007;69:525–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu C, Skadsberg ND, Ahlberg SE, Swingen CM, Iaizzo PA, He B. Estimation of global ventricular activation sequences by noninvasive three-dimensional electrical imaging: validation studies in a swine model during pacing. J Cardiovasc Electrophysiol 2008;19:535–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Qu J, Plotnikov AN, Danilo Jr P, et al. Expression and function of a biological pacemaker in canine heart. Circulation 2003;107:1106–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Chinchoy E, Soule CL, Houlton AJ, et al. Isolated four-chamber working swine heart model. Ann Thorac Surg 2000;70:1607–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Anderson RH, Yanni J, Boyett MR, Chandler NJ, Dobrzynski H. The anatomy of the cardiac conduction system. Clin Anat 2009;22:99–113.PubMedCrossRefGoogle Scholar
  23. 23.
    Arnolda LF, Llewellyn-Smith IJ, Minson JB. Animal models of heart failure. Aust N Z J Med 1999;29:403–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 1997;29:709–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Recchia FA, Lionetti V. Animal models of dilated cardiomyopathy for translational research. Vet Res Commun 2007;31 Suppl 1:35–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Wilson JR, Douglas P, Hickey WF, et al. Experimental congestive heart failure produced by rapid ventricular pacing in the dog: cardiac effects. Circulation 1987;75:857–67.PubMedCrossRefGoogle Scholar
  27. 27.
    Helm RH, Byrne M, Helm PA, et al. Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization. Circulation 2007;115:953–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Shen YT, Lynch JJ, Shannon RP, Wiedmann RT. A novel heart failure model induced by sequential coronary artery occlusions and tachycardiac stress in awake pigs. Am J Physiol 1999;277:H388–98.PubMedGoogle Scholar
  29. 29.
    Friedrichs GS. Experimental models of atrial fibrillation/flutter. J Pharmacol Toxicol Methods 2000;43:117–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Anadon MJ, Almendral J, Gonzalez P, Zaballos M, Delcan JL, De Guevara JL. Alcohol concentration determines the type of atrial arrhythmia induced in a porcine model of acute alcoholic intoxication. Pacing Clin Electrophysiol 1996;19:1962–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Kijtawornrat A, Roche BM, Hamlin RL. A canine model of sustained atrial fibrillation induced by rapid atrial pacing and phenylephrine. Comp Med 2008;58:490–3.PubMedGoogle Scholar
  32. 32.
    Bauer A, McDonald AD, Donahue JK. Pathophysiological findings in a model of persistent atrial fibrillation and severe congestive heart failure. Cardiovasc Res 2004;61:764–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Wijffels MC, Kirchhof CJ, Dorland R, Power J, Allessie MA. Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation 197;96:3710–20.Google Scholar
  34. 34.
    Adams JA, Bassuk JA, Arias J, et al. Periodic acceleration (pGz) CPR in a swine model of asphyxia induced cardiac arrest. Short-term hemodynamic comparisons. Resuscitation 2008;77:132–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Sridhar A, Nishijima Y, Terentyev D, et al. Repolarization abnormalities and afterdepolarizations in a canine model of sudden cardiac death. Am J Physiol 2008;295:R1463–72.Google Scholar
  36. 36.
    Lie JT, Holley KE, Kampa WR, Titus JL. New histochemical method for morphologic diagnosis of early stages of myocardial ischemia. Mayo Clin Proc 1971;46:319–27.PubMedGoogle Scholar
  37. 37.
    Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991;18:959–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Judd RM, Lugo-Olivieri CH, Arai M, et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 1995;92:1902–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jason L. Quill
    • 1
  • Michael D. Eggen
  • Eric S. Richardson
  1. 1.Departments of Surgery and Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations