Neurodegeneration in Neural Trauma, Neurodegenerative Diseases, and Neuropsychiatric Disorders

  • Akhlaq A. Farooqui


Neurodegeneration is a complex, progressive, and multifaceted process that results in neural cell dysfunction and death in brain and spinal cord. Adult brain and spinal cord contain terminally differentiated postmitotic neurons with downregulated cell division controlling mechanisms (silencing of cyclin-dependent kinases) and upregulated anti-apoptotic mechanisms such as neurotrophic factor signaling, antioxidant enzymes, protein chaperones, anti-apoptotic proteins, and ionostatic systems (Nguyen et al., 2002).


Spinal Cord Injury Neurodegenerative Disease Ischemic Injury Traumatic Injury Spinal Muscular Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10 Suppl:S18–S25PubMedCrossRefGoogle Scholar
  2. Arnold SE, Trojanowski JQ (1996) Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol (Berl) 92:217–231CrossRefGoogle Scholar
  3. Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668PubMedCrossRefGoogle Scholar
  4. Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S (2000) Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem 275:37159–37166PubMedCrossRefGoogle Scholar
  5. Bazan NG, Rodriguez de Turco EB, Allan G (1995) Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J Neurotrauma 12:791–814PubMedCrossRefGoogle Scholar
  6. Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17:915–925PubMedCrossRefGoogle Scholar
  7. Becker T, Becker G, Seufert J, Hofmann E, Lange KW, Naumann M (1997) Parkinson’s disease and depression: evidence for an alteration of the basal limbic system detected by transcranial sonography. J Neurol Neurosurg Psych 63:590–596CrossRefGoogle Scholar
  8. Becker EB, Bonni A (2005) Beyond proliferation–cell cycle control of neuronal survival and differentiation in the developing mammalian brain. Semin Cell Dev Biol 16:439–448PubMedCrossRefGoogle Scholar
  9. Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31:251–269PubMedCrossRefGoogle Scholar
  10. Benhar M, Forrester MT, Stamler JJ (2006) Nitrosative stress in the ER: a new role for S-nitrosylation in neurodegenerative diseases. ACS Chem Biol 1:355–358PubMedCrossRefGoogle Scholar
  11. BenMoyal-Segal L, Soreq H (2006) Gene-environment interactions in sporadic Parkinson’s disease. J Neurochem 97:1740–1755PubMedCrossRefGoogle Scholar
  12. Blanchard BJ, Thomas VL, Ingram VM (2002) Mechanism of membrane depolarization caused by the Alzheimer Abeta1-42 peptide. Biochem Biophys Res Commun 293:1197–1203PubMedCrossRefGoogle Scholar
  13. Blitzer RD, Iyengar R, Landau EM (2005) Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry 57:113–119PubMedCrossRefGoogle Scholar
  14. Block ML, Hong J-S (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98PubMedCrossRefGoogle Scholar
  15. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10 Suppl:S2–S9PubMedCrossRefGoogle Scholar
  16. Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150PubMedCrossRefGoogle Scholar
  17. Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS (2006) Pesticides and Parkinson’s disease – is there a link? Environ Health Perspect 114:156–164PubMedCrossRefGoogle Scholar
  18. Butler D, Bendiske J, Michaelis ML, Karanian DA, Bahr BA (2007) Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 562:20–27PubMedCrossRefGoogle Scholar
  19. Campbell A, Smith MA, Sayre LM, Bondy SC, Perry G (2001) Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res Bull 55:125–132PubMedCrossRefGoogle Scholar
  20. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105PubMedCrossRefGoogle Scholar
  21. Christen Y (2002) Proteins and mutations: a new vision (molecular) of neurodegenerative diseases. J Soc Biol 196:85–94PubMedGoogle Scholar
  22. Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136PubMedGoogle Scholar
  23. de la Torre JC (2000) Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer’s pathogenesis. Neurobiol Aging 21:331–342PubMedCrossRefGoogle Scholar
  24. de la Torre JC, Stefano GB (2000) Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Rev 34:119–136PubMedCrossRefGoogle Scholar
  25. de la Torre JC (2008) Pathophysiology of neuronal energy crisis in Alzheimer’s disease. Neurodegener Dis 5:126–132PubMedCrossRefGoogle Scholar
  26. Dickey CA, Gordon MN, Wilcock DM, Herber DL, Freeman MJ, Morgan D (2005) Dysregulation of Na+/K+ ATPase by amyloid in APP+PS1 transgenic mice. BMC Neurosci 6:7PubMedCrossRefGoogle Scholar
  27. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2005) Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 22:750–762PubMedCrossRefGoogle Scholar
  28. Dronne MA, Grenier E, Dumont T, Hommel M, Boissel JP (2007) Role of astrocytes in grey matter during stroke: a modelling approach. Brain Res 1138:231–242PubMedCrossRefGoogle Scholar
  29. Ellis RC, Earnhardt JN, Hayes RL, Wang KKW, Anderson DK (2004) Cathepsin B mRNA and protein expression following contusion spinal cord injury in rats. J Neurochem 88:689–697PubMedCrossRefGoogle Scholar
  30. Emerich DF, Dean IIIRL, Bartus RT (2002) The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 173:168–181PubMedCrossRefGoogle Scholar
  31. Erlich S, Shohami E, Pinkas-kramarski R (2006) Neurodegeneration induces upregulation of Beclin 1. Autophagy 2:49–51PubMedGoogle Scholar
  32. Farkas E, de Wilde MC, Kiliaan AJ, Luiten PG (2002) Chronic cerebral hypoperfusion-related neuropathologic changes and compromised cognitive status: window of treatment. Drugs Today (Barc) 38:365–376CrossRefGoogle Scholar
  33. Farooqui AA, Haun S, Horrocks LA (1994) Ischemia and hypoxia. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds) Basic Neurochemistry. Raven Press, New York, NY, pp 867–883Google Scholar
  34. Farooqui AA, Horrocks LA (1994) Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol 36:267–323PubMedCrossRefGoogle Scholar
  35. Farooqui AA (2009) Hot topics in neural membrane lipidology. Springer, New York, NYCrossRefGoogle Scholar
  36. Farooqui T, Farooqui AA (2009) Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Aging Dev 130:203–215Google Scholar
  37. Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer, New York, NY, pp 1–394Google Scholar
  38. Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599PubMedCrossRefGoogle Scholar
  39. Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977PubMedCrossRefGoogle Scholar
  40. Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York, NYGoogle Scholar
  41. Farooqui AA (2010) Neurochemical aspects in inflammation in brain. In: Farooqui AA, Farooqui T (eds) Molecular aspects of neurodegeneration and neuroprotection. Bentham Science Publishers Ltd, Sharjah (E. book) in pressGoogle Scholar
  42. Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 19:351–369PubMedCrossRefGoogle Scholar
  43. Gallagher S (2004) Neurocognitive models of schizophrenia: a neurophenomenological critique. Psychopathology 37:8–19PubMedCrossRefGoogle Scholar
  44. Golde TE (2009) The therapeutic importance of understanding mechanisms of neuronal cell death in neurodegenerative disease. Mol Neurodegener 4:8PubMedCrossRefGoogle Scholar
  45. Graeber MB, Grasbon-Frodl E, Eitzen UV, Kösel S (1998) Neurodegeneration and aging: role of the second genome. J Neurosci Res 52:1–6PubMedCrossRefGoogle Scholar
  46. Graeber MB, Moran LB (2002) Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol 12:385–390PubMedCrossRefGoogle Scholar
  47. Harrison PJ (1999) Neurochemical alterations in schizophrenia affecting the putative receptor targets of atypical antipsychotics.Focus on dopamine (D1, D3, D4) and 5-HT2a receptors. Brain 122:593–624PubMedCrossRefGoogle Scholar
  48. Hattori H, Wasterlain CG (1990) Excitatory amino acids in the developing brain: ontogeny, plasticity, and excitotoxicity. Pediatr Neurol 6:219–228PubMedCrossRefGoogle Scholar
  49. He J, Wang T, Wang P, Han P, Chen C (2007) A novel mechanism underlying the susceptibility of neuronal cells to nitric oxide: the occurrence and regulation of protein S-nitrosylation is the checkpoint. J Neurochem 102:1863–1874PubMedCrossRefGoogle Scholar
  50. Hinault MP, Ben-Zvi A, Goloubinoff P (2006) Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 30:249–265PubMedCrossRefGoogle Scholar
  51. Hornykiewicz O (1987) Neurotransmitters changes in human brain during aging. In: Govoni S, Battaini F (eds) Modification of cell to cell signals during normal and pathological aging. NATO ASI series, Heidelberg, Springer, pp 169–182CrossRefGoogle Scholar
  52. Ince PG, Codd GA (2005) Return of the cycad hypothesis – does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? NeuropatholAppl Neurobiol 31:345–353Google Scholar
  53. Ito H, Kawashima R, Awata S, Ono S, Sato K, Goto R, Koyama M, Sato M, Fukuda H (1996) Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med 37:410–414PubMedGoogle Scholar
  54. Juranek I, Bezek S (2005) Controversy of free radical hypothesis: reactive oxygen species – cause or consequence of tissue injury? Gen Physiol Biophys 24:263–278Google Scholar
  55. Kamel F, Hoppin JA (2004) Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 112:950–958PubMedCrossRefGoogle Scholar
  56. Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009a) The role of autophagy in spinal cord injury. Autophagy 5:390–392PubMedCrossRefGoogle Scholar
  57. Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009b) Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis 33:143–148PubMedCrossRefGoogle Scholar
  58. Katayama Y, Shimizu J, Suzuki S, Memezawa H, Kashiwagi F, Kamiya T, Terashi A (1990) Role of arachidonic acid metabolism on ischemic brain edema and metabolism. Adv Neurol 52:105–108PubMedGoogle Scholar
  59. Keifer MC, Firestone J (2007) Neurotoxicity of pesticides. J Agromedicine 12:17–25PubMedCrossRefGoogle Scholar
  60. Kimbrell TA, Ketter TA, George MS, Little JT, Benson BE, Willis MW, Herscovitch P, Post RM (2002) Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol Psychiatry 51:237–252PubMedCrossRefGoogle Scholar
  61. Klussmann S, Martin-Villalba A (2005) Molecular targets in spinal cord injury. J Mol Med 83:657–671PubMedCrossRefGoogle Scholar
  62. Krantic S, Mechawar N, Reix S, Quirion R (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28:670–676PubMedCrossRefGoogle Scholar
  63. Kwong JQ, Beal MF, Manfredi G (2006) The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 97:1659–1675PubMedCrossRefGoogle Scholar
  64. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605PubMedCrossRefGoogle Scholar
  65. Lee HG, Casadesus G, Zhu XW, Takeda A, Perry G, Smith MA (2004) Challenging the amyloid cascade hypothesis – senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. In: DeGrey ADN (ed) Strategies for engineered negligible senescence: why genuine control of aging may be foreseeable. Ann NY Acad Sci, New York, NY, pp 1–4Google Scholar
  66. Liu CL, Siesjo BK, Hu BR (2004) Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience 127:113–123PubMedCrossRefGoogle Scholar
  67. Lodi R, Tonon C, Calabrese V, Schapira AH (2006) Friedreich’s ataxia: from disease mechanisms to therapeutic interventions. Antioxid Redox Signal 8:438–443PubMedCrossRefGoogle Scholar
  68. Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31:1735–1743PubMedCrossRefGoogle Scholar
  69. Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med 3:65–94PubMedCrossRefGoogle Scholar
  70. Matute C, Domercq M, Sánchez-Gómez MV (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53:212–224PubMedCrossRefGoogle Scholar
  71. McIntosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ (1998) The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24:251–267PubMedCrossRefGoogle Scholar
  72. Merlin AB, Sherman MY (2005) Role of molecular chaperones in neurodegenerative disorders. Int J Hyperthermia 21:403–419CrossRefGoogle Scholar
  73. Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689PubMedCrossRefGoogle Scholar
  74. Moreira PI, Oliveira CR, Santos MS, Nunomura A, Honda K, Zhu XW, Smith MA, Perry G (2005) A second look into the oxidant mechanisms in Alzheimer’s disease. Curr Neurovasc Res 2:179–184PubMedCrossRefGoogle Scholar
  75. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22PubMedCrossRefGoogle Scholar
  76. Murck H, Song C, Horrobin DF, Uhr M (2004) Ethyl-eicosapentaenoate and dexamethasone resistance in therapy-refractory depression. Int J Neuropsychopharmacol 7:341–349PubMedCrossRefGoogle Scholar
  77. Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468PubMedCrossRefGoogle Scholar
  78. Nguyen MD, Mushynski WE, Julien JP (2002) Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 9:1294–1306PubMedCrossRefGoogle Scholar
  79. Nicotera P, Lipton SA (1999) Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab 19:583–591PubMedCrossRefGoogle Scholar
  80. Numazawa S, Ishikawa M, Yoshida A, Tanaka S, Yoshida T (2003) Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am J Physiol Cell Physiol 285:C334–C342PubMedGoogle Scholar
  81. Ong WY, Farooqui AA (2005) Iron, neuroinflammation, and Alzheimer’s disease. J Alzheimer Dis 8:183–200Google Scholar
  82. Panter SS, Yum SW, Faden AI (1990) Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neurol 27:96–99PubMedCrossRefGoogle Scholar
  83. Pedersen ED, Løberg EM, Vege E, Daha MR, Maehlen J, Mollnes TE (2009) In situ deposition of complement in human acute brain ischaemia. Scand J Immunol 69:555–562PubMedCrossRefGoogle Scholar
  84. Pettegrew JW, Klunk WE, Kanal E, Panchalingam K, McClure RJ (1995) Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia. Neurobiol Aging 16:973–975PubMedCrossRefGoogle Scholar
  85. Przedborski S, Vila M, Jackson-Lewis V (2003) Neurodegeneration: what is it and where are we? J Clin Invest 111:3–10PubMedGoogle Scholar
  86. Rami A, Bechmann I, Stehle JH (2008) Exploiting endogenous anti-apoptotic proteins for novel therapeutic strategies in cerebral ischemia. Prog Neurobiol 85:273–296PubMedCrossRefGoogle Scholar
  87. Rami A, Kögel D (2008) Apoptosis meets autophagy-like cell death in the ischemic penumbra: two sides of the same coin? Autophagy 4:422–426PubMedGoogle Scholar
  88. Rao AV, Balachandran B (2002) Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr Neurosci 5:291–309PubMedCrossRefGoogle Scholar
  89. Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Rev 42:169–185PubMedCrossRefGoogle Scholar
  90. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl:S10–S17PubMedCrossRefGoogle Scholar
  91. Sastry PS, Rao KS (2000) Apoptosis and the nervous system. J Neurochem 74:1–20PubMedCrossRefGoogle Scholar
  92. Schaller BJ (2008) Strategies for molecular imaging dementia and neurodegenerative diseases. Neuropsychiatr Dis Treat 4:585–612PubMedCrossRefGoogle Scholar
  93. Scheper W, Hoozemans JJ (2009) Endoplasmic reticulum protein quality control in neurodegenerative disease: the good, the bad and the therapy. Curr Med Chem 16:615–626PubMedCrossRefGoogle Scholar
  94. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33PubMedCrossRefGoogle Scholar
  95. Schinder AF, Olson EC, Spitzer NC, Montal M (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16:6125–6133PubMedGoogle Scholar
  96. Siesjo BK, Kristian T, Shibasaki F, Uchino H (2000) The role of mitochondrial dysfunction in reperfusion damage in the brain. In: Kriegistein J, Klumpp S (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgeselischaft Mbh, Stuttgart, pp 163–175Google Scholar
  97. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60PubMedCrossRefGoogle Scholar
  98. Sullivan PG, Springer JE, Hall ED, Scheff SW (2004) Mitochondrial uncoupling as a therapeutic target following neuronal injury. J Bioenerg Biomembr 36:353–356PubMedCrossRefGoogle Scholar
  99. Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16PubMedCrossRefGoogle Scholar
  100. Sundström E, Mo LL (2002) Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition. J Neurotrauma 19:257–266PubMedCrossRefGoogle Scholar
  101. Uehara T (2007) Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders.Antioxid Redox Signal 9:597–601PubMedCrossRefGoogle Scholar
  102. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208PubMedCrossRefGoogle Scholar
  103. Wehr H, Bednarska-Makaruk M, Łojkowska W, Graban A, Hoffman-Zacharska D, Kuczyńska-Zardzewiały A, Mrugała J, Rodo M, Bochyńska A, Sułek A, Ryglewicz D (2006) Differences in risk factors for dementia with neurodegenerative traits and for vascular dementia. Dement Geriatr Cogn Disord 22:1–7PubMedCrossRefGoogle Scholar
  104. Xu Z, Wang BR, Wang X, Kuang F, Duan XL, Jiao XY, Ju G (2006) ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Life Sci 79:1895–1905PubMedCrossRefGoogle Scholar
  105. Yager JY, Shuaib A, Thornhill J (1996) The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia. Brain Res Dev Brain Res 93:143–154PubMedCrossRefGoogle Scholar
  106. Yager JY, Thornhill JA (1997) The effect of age on susceptibility to hypoxic-ischemic brain damage. Neurosci Biobehav Rev 21:167–174PubMedCrossRefGoogle Scholar
  107. Zatta P, Drago D, Bolognin S, Sensi SL (2009) Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 30:346–355PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations