Advertisement

Laboratory Aspects of Medical Mycology

  • Mary E. Brandt
  • Shawn R. Lockhart
  • David W. Warnock
Chapter

Abstract

Over the course of time, more than 100,000 species of fungi have been recognized and described. However, fewer than 500 of these species have been associated with human disease, and no more than 100 are capable of causing infection in otherwise normal individuals. The remainder are only able to produce disease in hosts that are debilitated or immuno-compromised.

Keywords

Internal Transcribe Spacer Candida Species Invasive Aspergillosis Molecular Beacon Broth Microdilution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hibbett DS, Binder M, Bischoff JF, et al. A higher – level phylogenetic classification of the fungi. Mycol Res 2007;111: 509–47PubMedCrossRefGoogle Scholar
  2. 2.
    Odds FC. The fungal kingdom: essentials of mycology. In: Kibbler CC, Mackenzie DWR, Odds FC, eds. Principles and Practice of Clinical Mycology. Chichester: Wiley, 1996:1–6.Google Scholar
  3. 3.
    Odds FC, Arai T, Disalvo AF, et al. Nomenclature of fungal diseases: a report and recommendations from a sub-committee of the International Society for Human and Animal Mycology (ISHAM). J Med Vet Mycol 1992;30:1–10PubMedCrossRefGoogle Scholar
  4. 4.
    Ajello L. Phaeohyphomycosis: definition and etiology. In: Proceedings of the Third International Conference on the Mycoses. Scientific Publication 304. Washington, DC: Pan American Health Organization, 1975:126–133Google Scholar
  5. 5.
    Ajello L. Hyalohyphomycosis and phaeohyphomycosis: two global disease entities of public health importance. Eur J Epidemiol 1986;2:243–51PubMedCrossRefGoogle Scholar
  6. 6.
    Sangoi AR, Rogers WM, Longacre TA, Montoya JG, Baron EJ, Banaei N. Challenges and pitfalls of morphologic identification of fungal infections in histologic and cytologic specimens. Am J Clin Pathol 2009;33:364–75CrossRefGoogle Scholar
  7. 7.
    Jensen HE, Salonen J, Ekfors TO. The use of immunohistochemistry to improve sensitivity and specificity in the diagnosis of systemic mycoses in patients with hematological malignancies. J Pathol 1997;181:100–5PubMedCrossRefGoogle Scholar
  8. 8.
    Schuetz AN, Cohen C. Aspergillus immunohistochemistry of culture-proven fungal tissue isolates shows high cross-reactivity. Appl Immunohistochem Mol Morphol 2009;17:524–9PubMedCrossRefGoogle Scholar
  9. 9.
    Pincus DH, Orenga S, Hotelier S. Yeast identification-past, present, and future methods. Med Mycol 2007;45:97–121PubMedCrossRefGoogle Scholar
  10. 10.
    Rees JR, RW Pinner, RA Hajjeh, ME Brandt, AL Reingold. The epidemiological features of invasive mycotic infections in the San Francisco Bay area 1992–1993: results of population-based active surveillance. Clin Infect Dis 1998;27:1138–47PubMedCrossRefGoogle Scholar
  11. 11.
    Perfect JR, Cox GM, Lee JY, et al. The impact of culture isolation of Aspergillus species: a hospital-based survey of aspergillosis. Clin Infect Dis 2001;33:1924–33CrossRefGoogle Scholar
  12. 12.
    Vetter E, Torgerson C, Feuker A, et al. Comparison of the BACTEC Myco/F lytic bottle to the Isolator tube, BACTEC Plus Aerobic F/bottle, and BACTEC Anaerobic Lytic/10 bottle and comparison of the BACTEC Plus Aerobic F/bottle to the Isolator tube for recovery of bacteria, mycobacteria, and fungi from blood. J Clin Microbiol 2001;39:4380–6PubMedCrossRefGoogle Scholar
  13. 13.
    Kirby JE, Delaney M, Qian Q, Gold HS. Optimal use of Myco/F lytic and standard BACTEC blood culture bottles for detection of yeast and mycobacteria. Arch Pathol Lab Med 2009; 133:93–6PubMedGoogle Scholar
  14. 14.
    Horvath LL, George BJ, Murray CK, Harrison LS, Hospenthal DR. Direct comparison of the BACTEC 9240 and BacT/ALERT 3D automated blood culture systems for Candida growth detection. J Clin Microbiol 2004;42:115–8PubMedCrossRefGoogle Scholar
  15. 15.
    Foster N, Symes C, Barton R, Hobson R. Rapid identification of Candida glabrata in Candida bloodstream infections. J Med Microbiol 2007;56(Part 12):1639–43Google Scholar
  16. 16.
    Espinel-Ingroff A, Stockman L, Roberts G, et al. Comparison of RapID Yeast Plus system with API 20C system for identification of common, new, and emerging yeast pathogens. J Clin Microbiol 1998;36:1443–5Google Scholar
  17. 17.
    Taylor JW, Jacobson DJ, Kroken S, et al. Phylogenetic species ­recognition and species concepts in fungi. Fungal Genet Biol 2000;31:21–32PubMedCrossRefGoogle Scholar
  18. 18.
    Guarro J, Gené J, Stchigel AM. Developments in fungal taxonomy. Clin Microbiol Rev 1999;12:454–500PubMedGoogle Scholar
  19. 19.
    Gené J, Guillamon JM, Guarro J, Pujol J, Ulfig K. Molecular characterization, relatedness, and antifungal susceptibility of the basidiomycetous Hormographiella species and Coprinus cinereus from clinical and environmental sources. Antonie Leeuwenhoek Int J Genet 1996;70:49–57CrossRefGoogle Scholar
  20. 20.
    Balajee SA, Sigler L, Brandt ME. DNA and the classical way: identification of medically important molds in the 21st century. Med Mycol 2007;45:475–90PubMedCrossRefGoogle Scholar
  21. 21.
    Abliz P, Fukushima K, Takizawa K, Nieda N, Miyaji M, Nishimura K. Rapid identification of the genus Fonsecaea by PCR with specific oligonucleotide primers. J Clin Microbiol 2004;42:404–7PubMedCrossRefGoogle Scholar
  22. 22.
    Zhao J, Kong F, Li R, Wang X, Wan Z, Wang D. Identification of Aspergillus fumigatus and related species by nested PCR targeting ribosomal DNA internal transcribed spacer regions. J Clin Microbiol 2001;39:2261–6PubMedCrossRefGoogle Scholar
  23. 23.
    Berg DE, Akopyants NS, Kersulyte D. Fingerprinting microbial genomes using the RAPD or AP-PCR method. Methods Mol Cell Biol 1994;5:13–24Google Scholar
  24. 24.
    Hansen D, Healy M, Reece K, Smith C, Woods GL. Repetitive-sequence-based PCR using the DiversiLab system for identification of Aspergillus species. J Clin Microbiol 2008;46:1835–9PubMedCrossRefGoogle Scholar
  25. 25.
    Elie CM, Lott TJ, Burns BM, Reiss E, Morrison CJ. Rapid identification of Candida species using species-specific DNA probes. J Clin Microbiol 1998;36:3260–5PubMedGoogle Scholar
  26. 26.
    Kong F, Gilbert GL. Multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB)-a practical epidemiological and diagnostic tool. Nat Protoc 2006;1:2668–80PubMedCrossRefGoogle Scholar
  27. 27.
    Loeffler J, Hebart H, Magga S, et al. Identification of rare Candida species and other yeasts by polymerase chain reaction and slot blot hybridization. Diagn Microbiol Infect Dis 2000;38:207–12PubMedCrossRefGoogle Scholar
  28. 28.
    Martin C, Roberts D, van der Weide M, et al. Development of a PCR-based line probe assay for identification of fungal pathogens. J Clin Microbiol 2000;38:3735–42PubMedGoogle Scholar
  29. 29.
    Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 2006;19:165–256PubMedCrossRefGoogle Scholar
  30. 30.
    Guiver M, Levi K, Oppenheim BA. Rapid identification of Candida species by TaqMan PCR. J Clin Pathol 2001;54:362–6PubMedCrossRefGoogle Scholar
  31. 31.
    Loeffler J, Henke N, Hebart H, et al. Quantification of fungal DNA by using fluorescence resonance energy transfer and the light cycler system. J Clin Microbiol 2000;38:586–90PubMedGoogle Scholar
  32. 32.
    Huang A, Li JW, Shen ZQ, Wang XW, Jin M. High-throughput identification of clinical pathogenic fungi by hybridization to an oligonucleotide microarray. J Clin Microbiol 2006;44:3299–305PubMedCrossRefGoogle Scholar
  33. 33.
    Landlinger C, Preuner S, Willinger B, et al. Species-specific identification of a wide range of clinically relevant fungal pathogens by use of Luminex xMAP technology. J Clin Microbiol 2009;47: 1063–73PubMedCrossRefGoogle Scholar
  34. 34.
    Shepard JR, Addison RM, Alexander BD, et al. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol 2008; 46:50–5PubMedCrossRefGoogle Scholar
  35. 35.
    Petti CA, Bosshard PP, Brandt ME, et al. MM18-A: Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing: Approved Guideline. Wayne: Clinical and Laboratory Standards Institute, 2008Google Scholar
  36. 36.
    Borman AM, Linton CJ, Miles SJ, Johnson EM. Molecular identification of pathogenic fungi. J Antimicrob Chemother 2008; 61(Suppl 1):i7–12PubMedCrossRefGoogle Scholar
  37. 37.
    Pounder JI, Simmons KE, Barton CA, Hohmann SL, Brandt ME, Petti CA. Discovering potential pathogens among fungi identified as nonsporulating molds. J Clin Microbiol 2007;45:568–71PubMedCrossRefGoogle Scholar
  38. 38.
    Soll DR. The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev 2000;13:332–70PubMedCrossRefGoogle Scholar
  39. 39.
    Gil-Lamaignere C, Roilides E, Hacker J, Muller F-MC. Molecular typing for fungi-a critical review of the possibilities and limitations of currently and future methods. Clin Microbiol Infect 2003;9:172–85PubMedCrossRefGoogle Scholar
  40. 40.
    Spitzer ED, SG Spitzer. Use of a dispersed repetitive DNA element to distinguish clinical isolates of Cryptococcus neoformans. J Clin Microbiol 1992;30:1094–7PubMedGoogle Scholar
  41. 41.
    McAlpin CE, Mannarelli B. Construction and characterization of a DNA probe for distinguishing strains of Aspergillus flavus. Appl Environ Microbiol 1995;61:1068–72PubMedGoogle Scholar
  42. 42.
    Meunier J-R, Grimont PAD. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol 1993;144:373–9PubMedCrossRefGoogle Scholar
  43. 43.
    de Valk HA, Klaassen CHW, Meis JFGM. Molecular typing of Aspergillus species. Mycoses 2008;51:463–76PubMedCrossRefGoogle Scholar
  44. 44.
    Robles JC, Koreen L, Park S, Perlin DS. Multilocus sequence typing is a reliable alternative method to DNA fingerprinting for discriminating among strains of Candida albicans. J Clin Microbiol 2004;42:2480–8PubMedCrossRefGoogle Scholar
  45. 45.
    Odds FC, Jacobsen MD. Multilocus sequence typing of pathogenic Candida species. Eukaryot Cell 2008;7:1075–84PubMedCrossRefGoogle Scholar
  46. 46.
    Odds FC, Davidson AD, Jacobsen MD, et al. Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J Clin Microbiol 2006;44: 3647–58PubMedCrossRefGoogle Scholar
  47. 47.
    Vanhee LM, Symoens F, Jacobsen MD, Nelis HJ, Coenye T. Comparison of multiple typing methods for Aspergillus fumigatus. Clin Microbiol Infect 2009;15:643–50PubMedCrossRefGoogle Scholar
  48. 48.
    Sole M, Cano J, Rodriguez-Tudela JL, et al. Molecular typing of clinical and environmental isolates of Scedosporium prolificans by inter-simple-sequence-repeat polymerase chain reaction. Med Mycol 2003;41:293–300PubMedCrossRefGoogle Scholar
  49. 49.
    de Ruiter MT, de Valk HA, Meis JFGM, Klassen CHW. Retrotransposon insertion-site context (RISC) typing: a novel typing method for Aspergillus fumigatus and a convenient PCR alternative to restriction fragment length polymorphism analysis. J Microbiol Meth 2007;70:528–34CrossRefGoogle Scholar
  50. 50.
    Jones JM. Kinetics of antibody responses to cell wall mannan and a major cytoplasmic antigen of Candida albicans in rabbits and humans. J Lab Clin Med 1980;96:845–60PubMedGoogle Scholar
  51. 51.
    Reiss E, Stockman L, Kuykendall RS, Smith SJ. Dissociation of mannan-serum complexes and detection of Candida albicans mannan by enzyme immunoassay variations. Clin Chem 1982; 28:306–10PubMedGoogle Scholar
  52. 52.
    Wheat LJ. Improvements in diagnosis of histoplasmosis. Expert Opin Biol Ther 2006;6:1207–21PubMedCrossRefGoogle Scholar
  53. 53.
    Lindsley MD, Warnock, DW, Morrison, CJ. Serological and molecular diagnosis of fungal infection. In: Rose NR, Hamilton RG, Detrick B, eds. Manual of Clinical Laboratory Immunology, 7th edn. Washington, DC: ASM Press, 2006:569–605Google Scholar
  54. 54.
    Connolly PA, Durkin MM, LeMonte AM, Hackett EJ, Wheat LJ. Detection of Histoplasma antigen by quantitative enzyme immunoassay. Clin Vac Immunol 2007;14:1587–91CrossRefGoogle Scholar
  55. 55.
    McKinsey DS, McKinsey JP, Northcutt N, Sarria JC. Interlaboratory discrepancy of antigenuria results in 2 patients with AIDS and histoplasmosis. Diagn Microbiol Infect Dis 2009;63:111–4PubMedCrossRefGoogle Scholar
  56. 56.
    Wheat J, Wheat H, Connally P, et al. Cross-reactivity in Histoplasma capsulatum variety capsulatum antigen assays of urine samples from patients with endemic mycoses. Clin Infect Dis 1997;24:1169–71PubMedCrossRefGoogle Scholar
  57. 57.
    Kuberski T, Myers R, Wheat LJ, Kubal BM, Bruckner D, Pegues D. Diagnosis of coccdioidomycosis by antigen detection using cross-reaction with Histoplasma antigen. Clin Infect Dis 2007; 44:e50–4PubMedCrossRefGoogle Scholar
  58. 58.
    Einstein HE, Johnson RE. Coccidioidomycosis: new aspects of epidemiology and therapy. Clin Infect Dis 1993;16:349–56PubMedGoogle Scholar
  59. 59.
    Pappagiannis D, Zimmer BL. Serology of coccidioidomycosis. Clin Microbiol Rev 1990;3:247–68Google Scholar
  60. 60.
    Durkin M, Connolly P, Kuberski T, et al. Diagnosis of coccidioidomycosis with use of the Coccidioides antigen enzyme immunoassay. Clin Infect Dis 2008;47:69–73CrossRefGoogle Scholar
  61. 61.
    Durkin M, Witt J, LeMonte A, Wheat B, Connolly, P. Antigen assay with the potential to aid in diagnosis of blastomycosis. J Clin Microbiol 2004;42:4873–75PubMedCrossRefGoogle Scholar
  62. 62.
    Maertens J, Theunissen K, Lodewyck T. Advances in the serological diagnosis of invasive Aspergillus infections in patients with hematological disorders. Mycoses 2007;50(Suppl 1):2–17PubMedCrossRefGoogle Scholar
  63. 63.
    Marr KA, Balajee SA, McLaughlin L, Tabouret M, Bentsen C, Walsh TJ. Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: variables that affect performance. J Infect Dis 2004;190:641–9PubMedCrossRefGoogle Scholar
  64. 64.
    Herbrecht R, Letscher-Bru V, Oprea C, et al. Aspergillus galactomannan detection in the diagnosis of invasive aspergillosis in cancer patients. J Clin Oncol 2002;20:1898–906PubMedCrossRefGoogle Scholar
  65. 65.
    Husain S, Kwak EJ, Obman A, et al. Prospective assessment of Platelia Aspergillus galactomannan antigen for the diagnosis of invasive aspergillosis in lung transplant recipients. Am J Transplant 2004;4:796–802PubMedCrossRefGoogle Scholar
  66. 66.
    Balajee SA, Magill SS, Brandt ME. The role of molecular methods in the identification of fungal infections. Curr Fung Infect Rep 2007;1:65–71Google Scholar
  67. 67.
    Ponton J, Moragues MD, Quindos G. Non-culture-based diagnostics. In: Calderone RA, ed. Candida and Candidiasis. Washington, DC: ASM Press, 2002:395–425Google Scholar
  68. 68.
    Yera H, Sendid B, Francois N, Camus D, Poulain D. Contribution of serological tests and blood culture to the early diagnosis of systemic candidiasis. Eur J Clin Microbiol Infect Dis 2001; 20:864–70PubMedCrossRefGoogle Scholar
  69. 69.
    Odabasi Z, Mattiuzzi G, Estey E, et al. Beta-D-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin Infect Dis 2004; 39:199–205PubMedCrossRefGoogle Scholar
  70. 70.
    De Pauw B, W. T., Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 2008;46:1813–21PubMedCrossRefGoogle Scholar
  71. 71.
    Mancini N, Clerici D, Diotti R, et al. Molecular diagnosis of sepsis in neutropenic patients with hematological malignancies. J Med Microbiol 2008;57:601–4PubMedCrossRefGoogle Scholar
  72. 72.
    White PL, Barton R, Guiver M, et al. A consensus on fungal polymerase chain reaction diagnosis?: a United Kingdom-Ireland evaluation of polymerase reaction methods for detection of systemic fungal infections. J Mol Diagn 2006;8:376–84PubMedCrossRefGoogle Scholar
  73. 73.
    Einsele H, Hebart H, Roller G, et al. Detection and identification of fungal pathogens in blood by using molecular probes. J Clin Microbiol 1997;35:1353–60PubMedGoogle Scholar
  74. 74.
    Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis 2009;9:89–96PubMedCrossRefGoogle Scholar
  75. 75.
    Okhravi N, Adamson P, Lightman S. Use of PCR in endophthalmitis. Ocul Immunol Inflamm 2000;8:189–200PubMedGoogle Scholar
  76. 76.
    Jaeger EEM, Carroll NM, Choudhury S, et al. Rapid detection and identification of Candida, Aspergillus, and Fusarium species in ocular samples using nested PCR. J Clin Microbiol 2000;38:2902–8PubMedGoogle Scholar
  77. 77.
    Turin L, Riva F, Galbiati G, Cainelli T. Fast, simple and highly sensitive double-rounded polymerase chain reaction assay to detect medically relevant fungi in dermatological specimens. Eur J Clin Invest 2000;30:511–8PubMedCrossRefGoogle Scholar
  78. 78.
    Sugita T, Suto H, Unno T, et al. Molecular analysis of Malassezia microflora on the skin of atopic dermatitis patients and healthy subjects. J Clin Microbiol 2001;39:3486–90PubMedCrossRefGoogle Scholar
  79. 79.
    Lau A, Chen S, Sorrell T, et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol 2007;45:380–5PubMedCrossRefGoogle Scholar
  80. 80.
    Rickerts V, Mousset S, Lambrecht E, et al. Comparison of histopathological analysis, culture, and polymerase chain reaction assays to detect invasive mold infections from biopsy specimens. Clin Infect Dis 2007;44:1078–83PubMedCrossRefGoogle Scholar
  81. 81.
    Paterson PJ, Seaton S, McHugh TD, et al. Validation and clinical application of molecular methods for the identification of molds in tissue. Clin Infect Dis 2006;42:51–6PubMedCrossRefGoogle Scholar
  82. 82.
    Abbott JJ, Hamacher KL, Ahmed I. In situ hybridization in cutaneous deep fungal infections: a valuable diagnostic adjunct to fungal morphology and tissue cultures. J Cutan Pathol 2006; 33:426–32PubMedCrossRefGoogle Scholar
  83. 83.
    Pfaller MA, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Kroeger J, Diekema DJ. Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States, 2001–2007. J Clin Microbiol 2009;47:3185–90PubMedCrossRefGoogle Scholar
  84. 84.
    Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 1997;41:1364–8PubMedGoogle Scholar
  85. 85.
    Perfect JR, Cox GM. Drug resistance in Cryptococcus neoformans. Drug Resist Updat 1999;2:259–69PubMedCrossRefGoogle Scholar
  86. 86.
    Sutton DA, Sanche SE, Revankar SG, Fothergill AW, Rinaldi MG. In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol 1999;37:2343–5PubMedGoogle Scholar
  87. 87.
    Walsh TJ, Peter J, McGough DA, Fothergill AW, Rinaldi MG, Pizzo PA. Activities of amphotericin B and antifungal azoles alone and in combination against Pseudallescheria boydii. Antimicrob Agents Chemother 1995;39:1361–4PubMedGoogle Scholar
  88. 88.
    National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard. Document M27-A. Wayne: National Committee for Clinical Laboratory Standards, 1997Google Scholar
  89. 89.
    Clinical Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third edition. Document M27-A3. Wayne. Clinical and Laboratory Standards Institute, 2008Google Scholar
  90. 90.
    Barry AL, Pfaller MA, Brown SD, et al. Quality control limits for broth microdilution susceptibility tests of ten antifungal agents. J Clin Microbiol 2000;38:3457–9PubMedGoogle Scholar
  91. 91.
    Rex JH, Pfaller MA, Walsh TJ, et al. Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 2001;14:643–58PubMedCrossRefGoogle Scholar
  92. 92.
    Cuenca Estrella M, Diaz-Guerra TM, Mellado E, Rodriguez-Tudela JL. Influence of glucose supplementation and inoculum size on growth kinetics and antifungal susceptibility testing of Candida spp. J Clin Microbiol 2001;39:525–32PubMedCrossRefGoogle Scholar
  93. 93.
    Rodriguez-Tudela JL, Martinez-Suarez JV. Defining conditions for microbroth antifungal susceptibility tests: influence of RPMI and RPMI-2% glucose on the selection of endpoint criteria. J Antimicrob Chemother 1995;35:739–49PubMedCrossRefGoogle Scholar
  94. 94.
    Sanati H, Messer SA, Pfaller M, et al. Multi-center evaluation of broth microdilution method for susceptibility testing of Cryptococcus neoformans against fluconazole. J Clin Microbiol 1996;34:1280–2PubMedGoogle Scholar
  95. 95.
    Clinical Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; third informational supplement. CLSI document M27-S3. Wayne: Clinical and Laboratory Standards Institute, 2008Google Scholar
  96. 96.
    Rex JH, Cooper CR, Merz WG, Galgiani JN, Anaissie EJ. Detection of amphotericin B-resistant Candida isolates in a broth-based system. Antimicrob Agents Chemother 1995;39:906–9PubMedGoogle Scholar
  97. 97.
    Lozano-Chiu M, Nelson PW, Lancaster M, Pfaller MA, Rex JH. Lot-to-lot variability of antibiotic medium 3 used for testing susceptibility of Candida isolates to amphotericin B. J Clin Microbiol 1997;35:270–2PubMedGoogle Scholar
  98. 98.
    Odds FC, Vranckx L, Woestenborghs F. Antifungal susceptibility testing of yeasts: evaluation of technical variables for test automation. Antimicrob Agents Chemother 1995;39:2051–60PubMedGoogle Scholar
  99. 99.
    Pfaller MA, Messer SA, Coffmann S. Comparison of visual and spectrophotometric methods of MIC endpoint determinations by using broth microdilution methods to test five antifungal agents, including the new triazole, D0870. J Clin Microbiol 1995;33:1094–7PubMedGoogle Scholar
  100. 100.
    Pfaller MA, Boyken LB, Hollis RJ, et al. Validation of 24-hour fluconazole MIC readings versus the CLSI 48-hour broth microdilution reference method: results from a global Candida antifungal surveillance program. J Clin Microbiol 2008;46:3585–90PubMedCrossRefGoogle Scholar
  101. 101.
    Ostrosky-Zeichner L, Rex JH, Pfaller MA, et al. Rationale for reading fluconazole MICs at 24 hours rather than 48 hours when testing Candida spp. by the CLSI M27-A2 standard method. Antimicrob Agents Chemother 2008;52:4175–7PubMedCrossRefGoogle Scholar
  102. 102.
    Revankar SG, Kirkpatrick WR, McAtee RK, et al. Interpretation of trailing endpoints in antifungal susceptibility testing by the National Committee for Clinical Laboratory Standards method. J Clin Microbiol 1998;36:153–6PubMedGoogle Scholar
  103. 103.
    Rex JH, Nelson PW, Paetznick VL, Lozano-Chiu M, Espinel-Ingroff A, Anaissie EJ. Optimizing the correlation between results of testing in vitro and therapeutic outcome in vivo for fluconazole by testing critical isolates in a murine model of invasive candidiasis. Antimicrob Agents Chemother 1998;42:129–34PubMedGoogle Scholar
  104. 104.
    Arthington-Skaggs BA, Warnock DW, Morrison CJ. Quantitation of Candida albicans ergosterol content improves the correlation between in vitro antifungal susceptibility test results and in vivo outcome after fluconazole treatment in a murine model of invasive candidiasis. Antimicrob Agents Chemother 2000;44:2081–5PubMedCrossRefGoogle Scholar
  105. 105.
    Pfaller MA, Vu Q, Lancaster M, et al. Multisite reproducibility of colorimetric broth microdilution method for antifungal susceptibility testing of yeast isolates. J Clin Microbiol 1994;32:1625–8PubMedGoogle Scholar
  106. 106.
    To WK, Fothergill AW, Rinaldi MG. Comparative evaluation of macrodilution and alamar colorimetric microdilution broth methods for antifungal susceptibility testing of yeast isolates. J Clin Microbiol 1995;33:2660–4PubMedGoogle Scholar
  107. 107.
    Davey KG, Szekely A, Johnson EM, Warnock DW. Comparison of a new commercial colorimetric microdilution method with a standard method for in-vitro susceptibility testing of Candida spp. and Cryptococcus neoformans. J Antimicrob Chemother 1998;42:439–44PubMedCrossRefGoogle Scholar
  108. 108.
    Espinel-Ingroff A, Pfaller M, Messer SA, et al. Multicenter comparison of the Sensititre YeastOne Colorimetric Antifungal Panel with the National Committee for Clinical Laboratory Standards M27-A reference method for testing clinical isolates of common and emerging Candida spp., Cryptococcus spp., and other yeasts and yeast-like organisms. J Clin Microbiol 1999;37:591–5PubMedGoogle Scholar
  109. 109.
    Pfaller MA, Messer SA, Hollis RJ, et al. Multisite reproducibility of MIC results by the Sensititre YeastOne colorimetric antifungal susceptibility panel. Diagn Microbiol Infect Dis 1998;31:543–7PubMedCrossRefGoogle Scholar
  110. 110.
    Pfaller MA, Chaturvedi V, Diekema DJ, et al. Clinical evaluation of the Sensititre YeastOne colorimetric antifungal panel for antifungal susceptibility testing of the echinocandins anidulafungin, caspofungin, and micafungin. J Clin Microbiol 2008;46:2155–9PubMedCrossRefGoogle Scholar
  111. 111.
    Alexander BD, Byrne TC, Smith KL, et al. Comparative evaluation of Etest and Sensititre YeastOne panels against the Clinical and Laboratory Standards Institute M27-A2 reference broth microdilution method for testing Candida susceptibility to seven antifungal agents. J Clin Microbiol 2007;45:698–706PubMedCrossRefGoogle Scholar
  112. 112.
    Martín-Mazuelos E, Pemán J, Valverde A, Chaves M, Serrano MC, Cantón E. J. Comparision of the Sensititre Yeast One colorimetric antifungal panel and E-test with the NCCLS M38-A methods to determine the activity of amphotericin B and itraconazole against clinical isolates of Aspergillus of Antimicrob Chemother 2003;52:365–70PubMedCrossRefGoogle Scholar
  113. 113.
    Rex JH, Pfaller MA, Galgiani JN, et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro – in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin Infect Dis 1997; 24:235–47.PubMedGoogle Scholar
  114. 114.
    Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, et al. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol 2008;46:2620–9PubMedCrossRefGoogle Scholar
  115. 115.
    Pfaller MA, Diekema DJ, Rex JH, et al. Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J Clin Microbiol 2006;44:819–26PubMedCrossRefGoogle Scholar
  116. 116.
    Pfaller MA, Diekema DJ, Sheehan DJ. Interpretive breakpoints for fluconazole and Candida revisited: a blueprint for the future of antifungal susceptibility testing. Clin Microbiol Rev 2006; 19:435–47PubMedCrossRefGoogle Scholar
  117. 117.
    National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard. Document M38-A. Wayne: National Committee for Clinical Laboratory Standards, 2002Google Scholar
  118. 118.
    Espinel-Ingroff A, Dawson K, Pfaller M, et al. Comparative and collaborative evaluation of standardization of antifungal susceptibility testing for filamentous fungi. Antimicrob Agents Chemother 1995;39:314–9PubMedGoogle Scholar
  119. 119.
    Espinel-Ingroff A, Bartlett M, Bowden R, et al. Multicenter evaluation of proposed standardized procedure for antifungal susceptibility testing of filamentous fungi. J Clin Microbiol 1997; 35:139–43PubMedGoogle Scholar
  120. 120.
    Manavathu EK, Cutright J, Chandrasekar PH. Comparative study of susceptibilities of germinated and ungerminated conidia of Aspergillus fumigatus to various antifungal agents. J Clin Microbiol 1999;37:858–61PubMedGoogle Scholar
  121. 121.
    Espinel-Ingroff A, Bartlett M, Chaturvedi V, et al. Optimal susceptibility testing conditions for detection of azole resistance in Aspergillus spp.: NCCLS collaborative evaluation. Antimicrob Agents Chemother 2001;45:1828–35PubMedCrossRefGoogle Scholar
  122. 122.
    Espinel-Ingroff A, Fothergill A, Ghannoum M, et al. Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M 38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J Clin Microbiol 2005;43:5243–6PubMedCrossRefGoogle Scholar
  123. 123.
    Gehrt A, Peter J, Pizzo PA, Walsh TJ. Effect of increasing inoculum sizes of pathogenic filamentous fungi on MICs of antifungal agents by broth microdilution method. J Clin Microbiol 1995; 33:1302–7PubMedGoogle Scholar
  124. 124.
    Denning DW, Radford SA, Oakley KL, Hall L, Johnson EM, Warnock DW. Correlation between in vitro susceptibility testing to itraconazole and in-vivo outcome of Aspergillus fumigatus infection. J Antimicrob Chemother 1997;40:401–14PubMedCrossRefGoogle Scholar
  125. 125.
    National Committee for Clinical Laboratory Standards. Method for antifungal disk diffusion susceptibility testing of yeasts: approved guideline. NCCLS document M44-A. Wayne: National Committee for Clinical Laboratory Standards, 2004Google Scholar
  126. 126.
    Barry A, Bille J, Brown S, et al. Quality control limits for fluconazole disk susceptibility tests on Mueller-Hinton agar with glucose and methylene blue. J Clin Microbiol 2003;41:3410–2PubMedCrossRefGoogle Scholar
  127. 127.
    Pfaller MA, Barry A, Bille J, et al. Quality control limits for voriconazole disk susceptibility tests on Mueller-Hinton agar with glucose and methylene blue. J Clin Microbiol 2004;42:1716–8PubMedCrossRefGoogle Scholar
  128. 128.
    Barry AL, Pfaller MA, Rennie RP, Fuchs PC, Brown SD. Precision and accuracy of fluconazole susceptibility testing by broth microdilution, Etest, and disk diffusion methods. Antimicrob Agents Chemother 2002;46:1781–4PubMedCrossRefGoogle Scholar
  129. 129.
    Matar MJ, Ostrosky-Zeichner L, Paetznick VL, Rodriguez JR, Chen E, Rex JH. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob Agents Chemother 2003;47:1647–51PubMedCrossRefGoogle Scholar
  130. 130.
    Pfaller MA, Hazen KC, Messer SA, et al. Comparison of results of fluconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS global antifungal surveillance program. J Clin Microbiol 2004; 42:3607–12PubMedCrossRefGoogle Scholar
  131. 131.
    Pfaller MA, Boyken L, Messer SA, Tendolkar S, Hollis RJ, Diekema DJ. Comparison of results of voriconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS global antifungal surveillance program. J Clin Microbiol 2005;43:5208–13PubMedCrossRefGoogle Scholar
  132. 132.
    Espinel-Ingroff A, Arthington-Skaggs B, Iqbal N, et al. Multicenter evaluation of a new disk agar diffusion method for susceptibility testing of filamentous fungi with voriconazole, posaconazole, itraconazole, amphotericin B, and caspofungin. J Clin Microbiol 2007;45:1811–20PubMedCrossRefGoogle Scholar
  133. 133.
    Pfaller MA, Messer SA, Bolmstrom A, Odds FC, Rex JH. Multisite reproducibility of the E test method for antifungal susceptibility of yeast isolates. J Clin Microbiol 1996;34:1691–3PubMedGoogle Scholar
  134. 134.
    Pfaller MA, Messer SA, Mills K, Bolmström A, Jones RN. Evaluation of Etest method for determining caspofungin (MK-0991) susceptibilities of 726 clinical isolates of Candida species. J Clin Microbiol 2001;39:4387–9PubMedCrossRefGoogle Scholar
  135. 135.
    Warnock DW, Johnson EM, Rogers TRF. Multi-centre evaluation of the Etest method for antifungal drug susceptibility testing of Candida spp. and Cryptococcus neoformans. J Antimicrob Chemother 1998;42:321–31PubMedCrossRefGoogle Scholar
  136. 136.
    Pfaller MA, Messer SA, Mills K, Bolmstrom A. In vitro susceptibility testing of filamentous fungi: comparison of Etest and reference microdilution methods for determining itraconazole MICs. J Clin Microbiol 2000;38:3359–61PubMedGoogle Scholar
  137. 137.
    Szekely A, Johnson EM, Warnock DW. Comparison of E-test and broth microdilution methods for antifungal drug susceptibility testing of molds. J Clin Microbiol 1999;37:1480–3PubMedGoogle Scholar
  138. 138.
    Espinel-Ingroff A. Comparison of the E-test with the NCCLS M38-P method for antifungal susceptibility testing of common and emerging pathogenic filamentous fungi. J Clin Microbiol 2001;39:1360–7PubMedCrossRefGoogle Scholar
  139. 139.
    Espinel-Ingroff A. Comparison of three commercial assays and a modified disk diffusion assay with two broth microdilution reference assays for testing zygomycetes, Aspergillus spp., Candida spp., and Cryptococcus neoformans with posaconazole and amphotericin B. J Clin Microbiol 2006;44:3616–22PubMedCrossRefGoogle Scholar
  140. 140.
    Clancy CJ, Nguyen MH. Correlation between in vitro susceptibility determined by E test and response to therapy with amphotericin B: results from a multicenter prospective study of candidemia. Antimicrob Agents Chemother 1999;43:1289–90PubMedGoogle Scholar
  141. 141.
    Peyron F, Favel A, Michel-Nguyen A, Gilly M, Regli P, Bolmstrom A. Improved detection of amphotericin B-resistant isolates of Candida lusitaniae by Etest. J Clin Microbiol 2001;39:339–42PubMedCrossRefGoogle Scholar
  142. 142.
    Wanger A, Mills K, Nelson PW, Rex JH. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility testing: enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother 1995;39:2520–2PubMedGoogle Scholar
  143. 143.
    Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Multicenter comparison of the VITEK 2 yeast susceptibility test with the CLSI broth microdilution reference method for testing fluconazole against Candida spp. J Clin Microbiol 2007;45:796–802PubMedCrossRefGoogle Scholar
  144. 144.
    Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J Clin Microbiol 2007;45:3522–8PubMedCrossRefGoogle Scholar
  145. 145.
    Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect 2008; 14:398–405CrossRefGoogle Scholar
  146. 146.
    Espinel-Ingroff A, Barchiesi F, Cuenca-Estrella M, et al. International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole. J Clin Microbiol 2005;43:3884–9PubMedCrossRefGoogle Scholar
  147. 147.
    Cuenca-Estrella M, Arendrup MC, et al. Multicentre determination of quality control strains and quality control ranges for antifungal susceptibility testing of yeasts and filamentous fungi using the methods of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antimicrobial Susceptibility Testing (AFST-EUCAST). Clin Microbiol Infect 2007;13: 1018–22PubMedCrossRefGoogle Scholar
  148. 148.
    Rodriguez-Tudela JL, Martinez-Suarez JV. Improved medium for fluconazole susceptibility testing of Candida albicans. Antimicrob Agents Chemother 1995;38:45–8Google Scholar
  149. 149.
    Cuenca-Estrella M, Moore CB, Barchiesi F, et al. Multicenter evaluation of the reproducibility of the proposed antifungal susceptibility testing method for fermentative yeasts of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antimicrobial Susceptibility Testing (AFST-EUCAST). Clin Microbiol Infect 2003;9:467–74PubMedCrossRefGoogle Scholar
  150. 150.
    Rodriguez-Tudela JL, Donnelly JP, Pfaller MA, et al. Statistical analyses of correlation between fluconazole MICs for Candida spp. assessed by standard methods set forth by the European Committee on Antimicrobial Susceptibility Testing (E.Dis. 7.1) and CLSI (M27-A2). J Clin Microbiol 2007;45:109–11PubMedCrossRefGoogle Scholar
  151. 151.
    European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST). EUCAST technical note on fluconazole. Clin Microbiol Infect 2008;14:193–5CrossRefGoogle Scholar
  152. 152.
    Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing. EUCAST Technical Note on voriconazole. Clin Microbiol Infect 2008;14:985–7CrossRefGoogle Scholar
  153. 153.
    Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing. EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect 2008;14:982–4CrossRefGoogle Scholar
  154. 154.
    Rex JH, Pfaller MA. Has antifungal susceptibility testing come of age? Clin Infect Dis 2002;35:982–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mary E. Brandt
    • 1
  • Shawn R. Lockhart
  • David W. Warnock
  1. 1.Mycotic Diseases BranchCenters for Disease Control and PreventionAtlantaUSA

Personalised recommendations