Skip to main content

Graph Theoretic Methods in Coding Theory

  • Chapter
  • First Online:
Classical, Semi-classical and Quantum Noise

Abstract

Let \({\Sigma }_{q} =\{ 0,1,\ldots,q - 1\}\) be an alphabet of order q. A q-ary (unrestricted) code C of length n and size | C | is a subset of Σ q n containing | C | elements called codewords. The Hamming weight wt(c) of a codeword c is the number of its nonzero entries. A constant-weight code is a code where all the codewords have the same Hamming weight. The Hamming distance d(c, c′) between two codewords c and c′ is the number of positions where they have different entries. The minimum Hamming distance of a code C is the largest integer Δ such that ∀c,c′C, d(c, c′) ≥ Δ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macwilliams FJ, Sloane NJA (1977) The theory of error-correcting-codes. North-Holland, Amsterdam

    MATH  Google Scholar 

  2. Sloane NJA (1989) Unsolved problems in graph theory arising from the study of codes. Graph Theory Notes of New York 18:11-20

    Google Scholar 

  3. Ahlswede R, Khachatrian LH (1997) The complete intersection theorem for systems of finite sets. Eur J Combinator 18:125–136

    Article  MathSciNet  Google Scholar 

  4. Ahlswede R, Khachatrian LH (1998) The diametric theorem in Hamming spaces - optimal anticodes. Adv Appl Math 20:429–449

    Article  MathSciNet  Google Scholar 

  5. Frankl P, Tokushige N (1999) The Erdős-Ko-Rado theorem for integer sequences. Combinatorica 19:55–63

    Article  MathSciNet  Google Scholar 

  6. Diestel R (2006) Graph theory. Springer, New York

    MATH  Google Scholar 

  7. Godsil C, Royle G (2001) Algebraic graph theory. Springer, New York

    Book  Google Scholar 

  8. van Lint JH, Wilson RM (2001) A course in combinatorics. Cambridge University Press, United Kingdom

    Book  Google Scholar 

  9. Ahlswede R (2001) On perfect codes and related concepts. Designs Codes Cryptography 22:221–237

    Article  MathSciNet  Google Scholar 

  10. Kleitman DJ (1966) On a combinatorial conjecture of Erdős. J Combin Theor 1:209–214

    Article  Google Scholar 

  11. El Rouayheb S, Georghiades CN, Soljanin E, Sprintson A (2007) Bounds on codes based on graph theory. Int Symp Inform Theor Nice

    Google Scholar 

  12. Matsumoto R, Kurosawa K, Itoh T, Konno T, Uyematsu T (2006) Primal-dual distance bounds of linear codes with applications to cryptography. IEEE Trans Inform Theor 52:4251–4256

    Article  MathSciNet  Google Scholar 

  13. Tolhuizen L (1997) The generalized Gilbert–Varshamov bound is implied by turàn’s theorem. IEEE Trans Inform Theor 43:1605–1606

    Article  MathSciNet  Google Scholar 

  14. Delsarte P (1973) An algebraic approach to association schemes of coding theory. Phillips J Res 10

    Google Scholar 

  15. Agrell E, Vardy A, Zeger K (2000) Upper bounds for constant-weight codes. IEEE Trans Inform Theor 46:2373–2395

    Article  MathSciNet  Google Scholar 

  16. Johnson SM (1962) A new upper bound for error-correcting codes. IRE Trans Inform Theor IT-8:203–207

    Article  MathSciNet  Google Scholar 

  17. Levenshtein VI (1974) Upper bound estimates for fixed-weight codes. Probl Inform Trans 7:281–287

    Google Scholar 

  18. Erdős P, Ko C, Rado R (1961) Intersection theorems for systems of finite sets. Quart J Math Oxford 12:313–320

    Article  MathSciNet  Google Scholar 

  19. Wilson RM (1984) The exact bound on the Erdos-ko-Rado Theorem. Combinatorica 4:247–260

    Article  MathSciNet  Google Scholar 

  20. Jiang T, Vardy A (2000) Asymptotic improvement of the Gilbert–Varshamov bound on the size of binary codes. IEEE Trans Inform Theor 50(8):1655–2395

    Article  MathSciNet  Google Scholar 

  21. Richardson T, Urbanke R (2008) Modern coding theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim El Rouayheb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rouayheb, S.E., Georghiades, C.N. (2012). Graph Theoretic Methods in Coding Theory. In: Cohen, L., Poor, H., Scully, M. (eds) Classical, Semi-classical and Quantum Noise. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6624-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6624-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6623-0

  • Online ISBN: 978-1-4419-6624-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics