Entanglement Criteria for Continuous-Variable Systems



In 1935, Einstein, Podolsky, and Rosen (EPR) questioned the completeness of quantum theory in their seminal work [1]. The argument is based on two spatially separated systems, which are prepared into a bipartite wavefunction and then cease to interact with each other. According to quantum mechanics, a measurement on system I will reduce system II into certain wavefunction. A different measurement setting will reduce system II into another wavefunction. These two wavefunctions could be eigenfunctions of noncommuting operators. On the one hand, localism states that the choice of measurement in system I should not change system II. On the other hand, without disturbance, the eigenfunction of an operator provides the value of the physical quantity with certain, which corresponds to an element of physical reality. So by choosing different measurement settings, two noncommuting physical quantities could have simultaneous reality, which obviously contradicts with the uncertainty relation. Therefore, EPR argued that the wave function description in quantum theory cannot be complete.


Entangle State Uncertainty Relation Separable State Schwarz Inequality High Order Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Einstein A, Podolsky B, Rosen N (1935) Phys Rev 47:777CrossRefMATHGoogle Scholar
  2. 2.
    Bohm D (1951) Quantum theory. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  3. 3.
    Bell JS (1964) Physics 1:195Google Scholar
  4. 4.
    Freedman SJ, Clauser J (1972) Phys Rev Lett 28:938CrossRefGoogle Scholar
  5. 5.
    Fry ES, Thompson RC (1976) Phys Rev Lett 37:465.CrossRefGoogle Scholar
  6. 6.
    Aspect A, Grangier P, Roger G (1982) Phys Rev Lett 49:91CrossRefGoogle Scholar
  7. 7.
    Perrie W, Duncan AJ, Beyer HJ, Kleinpoppen H (1985) Phys Rev Lett 54:1790CrossRefGoogle Scholar
  8. 8.
    Shih YH, Alley CO (1988) Phys Rev Lett 61:2921CrossRefGoogle Scholar
  9. 9.
    Ou ZY, Mandel L (1988) Phys Rev Lett 61:50CrossRefMathSciNetGoogle Scholar
  10. 10.
    Rarity JG, Tapster PR (1990) Phys Rev Lett 64:2495CrossRefGoogle Scholar
  11. 11.
    Hasegawa Y, Loidl R, Badurek G, Baron M, Rauch H (2003) Nature 425:45CrossRefGoogle Scholar
  12. 12.
    Clauser JF, Horne MA, Shimony A, Holt RA (1969) Phys Rev Lett 23:880CrossRefGoogle Scholar
  13. 13.
    Schrödinger E (1935) Naturwissenschaften 23:807CrossRefGoogle Scholar
  14. 14.
    Bennett CH, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters WK (1993) Phys Rev Lett 70:1895CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Bennett CH, Wiesner SJ (1992) Phys Rev Lett 69:2881CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Ekert AK (1991) Phys Rev Lett 67:6961CrossRefMathSciNetGoogle Scholar
  17. 17.
    Barenco A, Deutsch D, Ekert A, Jozsa R (1995) Phys Rev Lett 74:4083CrossRefGoogle Scholar
  18. 18.
    Schmidt E (1907) Math Ann 63:433CrossRefMathSciNetGoogle Scholar
  19. 19.
    Peres A (1996) Phys Rev Lett 77:1413CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Horodecki M, Horodecki P, Horodecki R (1996) Phys Lett A 223:1CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Simon R (2000) Phys Rev Lett 84:2726CrossRefGoogle Scholar
  22. 22.
    Duan LM, Giedke G, Cirac JI, Zoller P (2000) Phys Rev Lett 84:2722CrossRefGoogle Scholar
  23. 23.
    Giedke G, Kraus B, Lewenstein M, Cirac JI (2001) Phys Rev Lett 87:167904CrossRefGoogle Scholar
  24. 24.
    Hillery M, Zubairy MS (2006) Phys Rev Lett 96:050503 (Hillery M, Zubairy MS (2006) Phys Rev A 74:032333)Google Scholar
  25. 25.
    Agarwal GS, Biswas A (2005) New J Phys 7:211CrossRefMathSciNetGoogle Scholar
  26. 26.
    Nha H, Kim J (2006) Phys Rev A 74:012317CrossRefGoogle Scholar
  27. 27.
    Nha H (2007) Phys Rev A 76:014305CrossRefGoogle Scholar
  28. 28.
    Shchukin E, Vogel W (2005) Phys Rev Lett 95:230502 (2005) (Shchukin E, Vogel W (2006) Phys Rev A 74:030302(R))Google Scholar
  29. 29.
    Adesso G, Illuminati F (2007) J Phys A 40:7821CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Li F-L, Zubairy MS (2007) In: Chen G, Kauffman L, Lomonaco SJ (eds) Mathematics of quantum computation and quantum technology, pp 349–385Google Scholar
  31. 31.
    Werner RF (1989) Phys Rev A 40:4277CrossRefGoogle Scholar
  32. 32.
    Horodecki R, Horodecki P, Horodecki M (1996) Phys Lett A 210:377CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Horodecki P (1997) Phys Lett A232:333MathSciNetGoogle Scholar
  34. 34.
    Horodecki M, Horodecki P, Horodecki R (1998) Phys Rev Lett 80:5239CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Simon R, Sudarshan ECG, Mukunda N (1987) Phys Rev A 6:3868CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics and Institute of Quantum StudiesTexas A&M UniversityCollege StationUSA

Personalised recommendations