Electromagnetically Induced Transparency with Fields Spectrally Broadened by Phase Noise

  • Eugeniy Mikhailov
  • Yuri V. Rostovtsev
  • George R. Welch


Electromagnetically induced transparency [1, 2] or EIT is an important nonlinear optical effect with wide ranging applications from slow light [3, 4] to sub-diffraction-limited optical imaging [5]. The most striking feature is the presence of zero (or low) absorption of a probe laser when it is exactly on resonance. In addition to the greatly reduced absorption is greatly enhanced normal dispersion on resonance. It is this steep dispersion coupled with low absorption that makes the system so rich.


Probe Field Phase Noise Probe Laser Full Width Half Maximum Magnetic Sublevel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marangos JP (1998) Topical review electromagnetically induced transparency. J Mod Opt 45:471CrossRefGoogle Scholar
  2. 2.
    Harris SE (1997) Electromagnetically induced transparency. Phys Today 50(7):36Google Scholar
  3. 3.
    Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720):594–598CrossRefGoogle Scholar
  4. 4.
    Kash MM, Sautenkov VA, Zibrov AS, Hollberg L, Welch GR, Lukin MD, Rostovtsev Y, Fry ES, Scully MO (1999) Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys Rev Lett 82(26):5229–5232CrossRefGoogle Scholar
  5. 5.
    Li H, Sautenkov VA, Kash MM, Sokolov AV, Welch GR, Rostovtsev YV, Zubairy MS, Scully MO (2008) Optical imaging beyond the diffraction limit via dark states. Phys Rev A 78:013803CrossRefGoogle Scholar
  6. 6.
    Armstrong JA (1966) J Opt Soc Am 56:1024CrossRefGoogle Scholar
  7. 7.
    Centeno NR, Boersma DM, Nienhuis G, van Exter MP, Woerdman JP (1992) Spectral filtering within the Schawlow-Townes linewidth of a semiconductor laser. Phys Rev Lett 69(4):593CrossRefGoogle Scholar
  8. 8.
    Bahoura M, Andre Clairon A (2001) Diode-laser noise conversion in an optically dense atomic sample. Opt Lett 26(12):926CrossRefGoogle Scholar
  9. 9.
    See, for example, materials of the 14th International conference on atomic physics. Diode laser noise conversion and reduction in rubidium, vol 1A-7, 1994, where many examples of noise conversion were reportedGoogle Scholar
  10. 10.
    Garrido Alzar CL, Cruz LS, Aguirre Gomez JG, Franca Santos M, Nussenzveig P (2003) Super-poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency. Europhys Lett 61(4):485–491CrossRefGoogle Scholar
  11. 11.
    Sultana S, Zubairy MS (1994) Effect of finite bandwidth on refractive-index enhancement and lasing without inversion. Phys Rev A 49(1):438–448CrossRefGoogle Scholar
  12. 12.
    Kim HA, Kwon KA, Kim JB (1997) Effects of laser linewidth, rabi frequency and detunings on electromagnetically induced. J Kor Phys Soc 30(2):407–412Google Scholar
  13. 13.
    Mikhailov EE, Sautenkov VA, Rostovtsev YV, Zhang A, Zubairy MS, Scully MO, Welch GR (2006) Spectral narrowing of a phase broadened optical field in a coherently prepared medium. Phys Rev A 74:013807CrossRefGoogle Scholar
  14. 14.
    Ahmanov SA, Dyakov YE, Chirkin AS (1981) Vvedenie v Statisticheskuyu Radiofiziku i Optiku. Nauka, MoscowGoogle Scholar
  15. 15.
    Wynands R, Nagel A (1998) Precision spectroscopy with coherent dark states. Appl Phys B 68:1CrossRefGoogle Scholar
  16. 16.
    Pomerantsev NM, Rizhkov VM, Skrotskiy GV (1972) Fizicheskie Osnovi Kvantovoy Optiki. Nauka, MoscowGoogle Scholar
  17. 17.
    Mikhailov EE, Novikova I, Rostovtsev YV, Welch GR (2004) Buffer-gas induced absorption resonances in Rb vapor. Phys Rev A 70:033806CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Eugeniy Mikhailov
    • 1
  • Yuri V. Rostovtsev
    • 2
  • George R. Welch
    • 3
  1. 1.College of William and MaryWilliamsburgUSA
  2. 2.Department of PhysicsUniversity of North TexasDentonUSA
  3. 3.Texas A&M UniversityCollege StationUSA

Personalised recommendations