Methods of Parameter Variations

  • Christoph Knoth
  • Ulf Schlichtmann
  • Bing Li
  • Min Zhang
  • Markus Olbrich
  • Emrah Acar
  • Uwe Eichler
  • Joachim Haase
  • André Lange
  • Michael Pronath
Chapter

Abstract

Chapter 4 presents various dedicated methods that support variability handling in the design process. Using these methods, the designer can analyze the effect of variations on his design and identify possible improvements.

Keywords

Covariance Crest Polysilicon Padding 

References

  1. 1.
    Scheffer, L., Lavagno, L., Martin, G. (eds.): EDA for IC implementation, circuit design, and process technology. CRC Press (2006)Google Scholar
  2. 2.
    Kayssi, A.I., Sakallah, K.A., Mudge, T.N.: The impact of signal transition time on path delay computation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40(5), 302–309 (1993)MATHCrossRefGoogle Scholar
  3. 3.
    Nardi, A., Neviani, A., Zanoni, E.: Impact of unrealistic worst case modeling on the performance of VLSI circuits in deep submicron CMOS technologies. IEEE Transactions on Semiconductor Manufacturing (SM) 12(4), 396–402 (1999)Google Scholar
  4. 4.
    Dasdan, A., Hom, I.: Handling inverted temperature dependence in static timing analysis. ACM Transactions on Design Automation of Electronic Systems 11(2), 306–324 (2006)CrossRefGoogle Scholar
  5. 5.
    Weber, M.: My head hurts, my timing stinks, and i don’t love on-chip variation. In: SNUG (2002)Google Scholar
  6. 6.
    Incentia: Advanced on-chip-variation timing analysis. Tech. rep., Incentia Design Systems Inc. (2007)Google Scholar
  7. 7.
    Qian, J., Pullela, S., Pillage, L.: Modeling the “effective capacitance” for the RC interconnect of CMOS gates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 13(12), 1526–1535 (1994)CrossRefGoogle Scholar
  8. 8.
    Celik, M., Pileggi, L., Odabasioglu, A.: IC Interconnect Analysis. Kluwer Academic Publishers (2004)Google Scholar
  9. 9.
    ECSM - effective current source model. http://www.cadence.com/Alliances/languages/Pages/ecsm.aspx (2007)
  10. 10.
  11. 11.
    Sakurai, T., Newton, A.R.: Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE Journal of Solid-State Circuits SC 25(2), 584–594 (1990)CrossRefGoogle Scholar
  12. 12.
    Hirata, A., Onodera, H., Tamaru, K.: Proposal of a timing model for CMOS logic gates driving a CRC pi load. In: ICCAD’98: Proceedings of the IEEE/ACM International Conference on Computer-aided Design, pp. 537–544. ACM, New York, NY, USA (1998)Google Scholar
  13. 13.
    Knoth, C., Kleeberger, V.B., Nordholz, P., Schlichtmann, U.: Fast and waveform independent characterization of current source models. In: IEEE/VIUF International Workshop on Behavioral Modeling and Simulation (BMAS), pp. 90–95 (2009)Google Scholar
  14. 14.
    Croix, J., Wong, M.: Blade and razor: cell and interconnect delay analysis using current-based models. In: ACM/IEEE Design Automation Conference (DAC), pp. 386–389 (2003)Google Scholar
  15. 15.
    Feldmann, P., Abbaspour, S., Sinha, D., Schaeffer, G., Banerji, R., Gupta, H.: Driver waveform computation for timing analysis with multiple voltage threshold driver models. In: ACM/IEEE Design Automation Conference (DAC), pp. 425–428 (2008)Google Scholar
  16. 16.
    Liu, B., Kahng, A.B.: Statistical gate level simulation via voltage controlled current source models. In: IEEE International Behavioral Modeling and Simulation Workshop (2006)Google Scholar
  17. 17.
    Wang, X., Kasnavi, A., Levy, H.: An efficient method for fast delay and SI calculation using current source models. In: IEEE International Symposium on Quality Electronic Design, pp. 57–61. IEEE Computer Society, Washington, DC, USA (2008)Google Scholar
  18. 18.
    Kashyap, C., Amin, C., Menezes, N., Chiprout, E.: A nonlinear cell macromodel for digital applications. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 678–685 (2007)Google Scholar
  19. 19.
    Li, P., Feng, Z., Acar, E.: Characterizing multistage nonlinear drivers and variability for accurate timing and noise analysis. IEEE Transactions on VLSI Systems 15(11), 1205–1214 (2007)CrossRefGoogle Scholar
  20. 20.
    Goel, A., Vrudhula, S.: Current source based standard cell model for accurate signal integrity and timing analysis. In: Design, Automation and Test in Europe (DATE), pp. 574–579 (2008)Google Scholar
  21. 22.
    Fatemi, H., Nazarian, S., Pedram, M.: Statistical logic cell delay analysis using a current-based model. In: ACM/IEEE Design Automation Conference (DAC), pp. 253–256 (2006)Google Scholar
  22. 22.
    Fatemi, H., Nazarian, S., Pedram, M.: Statistical logic cell delay analysis using a current-based model. In: ACM/IEEE Design Automation Conference (DAC), pp. 253–256 (2006)Google Scholar
  23. 23.
    Mitev, A., Ganesan, D., Shanmugasundaram, D., Cao, Y., Wang, J.M.: A robust finite-point based gate model considering process variations. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 692–697 (2007)Google Scholar
  24. 24.
    Amin, C., Kashyap, C., Menezes, N., Killpack, K., Chiprout, E.: A multi-port current source model for multiple-input switching effects in CMOS library cells. In: ACM/IEEE Design Automation Conference (DAC), pp. 247–252 (2006)Google Scholar
  25. 25.
    Dabas, S., Dong, N., Roychowdhury, J.: Automated extraction of accurate delay/timing macromodels of digital gates and latches using trajectory piecewise methods. In: Asia and South Pacific Design Automation Conference, pp. 361–366 (2007)Google Scholar
  26. 26.
    Knoth, C., Kleeberger, V.B., Schmidt, M., Li, B., Schlichtmann, U.: Transfer system models of logic gates for waveform-based timing analysis. In: International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD), pp. 247–252 (2008)Google Scholar
  27. 27.
    Goel, A., Vrudhula, S.: Statistical waveform and current source based standard cell models for accurate timing analysis. In: ACM/IEEE Design Automation Conference (DAC), pp. 227–230 (2008)Google Scholar
  28. 28.
    Zolotov, V., Xiong, J., Abbaspour, S., Hathaway, D.J., Visweswariah, C.: Compact modeling of variational waveforms. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 705–712. IEEE Press, Piscataway, NJ, USA (2007)Google Scholar
  29. 29.
    Yeo, K.S., Roy, K.: Low Voltage, Low Power VLSI Subsystems. McGraw-Hill Professional (2004)Google Scholar
  30. 30.
    Narendra, S., Blaauw, D., Devgan, A., Najm, F.: Leakage issues in IC design: Trends, estimation and avoidance. In: Proc. ICCAD 2003, Tutorial (2003)Google Scholar
  31. 79.
    Rao, R.R., Devgan, A., Blaauw, D., Sylvester, D.: Parametric yield estimation considering leakage variability. In: Proc. DAC 2004, pp. 442–447 (2004)Google Scholar
  32. 32.
    Agarwal, A., Kang, K., Roy, K.: Accurate estimation and modeling of total chip leakage considering inter- & intra-die process variations. In: ICCAD, pp. 736–741 (2005)Google Scholar
  33. 33.
    Li, T., Zhang, W., Yu, Z.: Full-chip leakage analysis in nano-scale technologies: Mechanisms, variation sources, and verification. In: Proc. DAC 2008, pp. 594–599 (2008)Google Scholar
  34. 34.
    Li, X., Le, J., Pileggi, L.T., Strojwas, A.: Projection-based performance modeling for inter/intra-die variations. In: Proc. ICCAD 2005, pp. 721–727 (2005)Google Scholar
  35. 35.
    Li, X., Le, J., Pileggi, L.T.: Projection-based statistical analysis of full-chip leakage power with non-log-normal distributions. In: Proc. DAC 2006, pp. 103–108 (2006)Google Scholar
  36. 36.
    Zhuo, F., Li, P.: Performance-oriented statistical parameter reduction of parameterized systems via reduced rank regression. In: Proc. ICCAD 2006, pp. 868–875 (2006)Google Scholar
  37. 37.
    Mitev, A., Marefat, M., Ma, D., Wang, J.M.: Principle hessian direction based parameter reduction with process variation. In: Proc. ICCAD 2007, pp. 632–637 (2007)Google Scholar
  38. 38.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer (2001)Google Scholar
  39. 39.
    Bellman, R.E.: Adaptive Control Processes. Princeton University Press (1961)Google Scholar
  40. 43.
    Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4(1), 1–58 (1992)CrossRefGoogle Scholar
  41. 41.
    Sugiyama, M., Rubens, N.: Active learning with model selection in linear regression. In: The SIAM International Conference on Data Mining, pp. 518–529 (2008)Google Scholar
  42. 42.
    Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook. Springer (2005)Google Scholar
  43. 43.
    Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4(1), 1–58 (1992)CrossRefGoogle Scholar
  44. 44.
    Berk, R.A.: Statistical Learning from a Regression Perspective. Springer (2008)Google Scholar
  45. 45.
    Cadence: Clock Domain Crossing (White Paper) (2004)Google Scholar
  46. 46.
    Shenoy, N., Brayton, R., Sangiovanni-Vincentelli, A.: Minimum padding to satisfy short path constraints. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 156–161 (1993)Google Scholar
  47. 47.
    Zhang, L., Tsai, J., Chen, W., Hu, Y., Chen, C.C.P.: Convergence-provable statistical timing analysis with level-sensitive latches and feedback loops. In: IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 941–946 (2006)Google Scholar
  48. 48.
    Kamikawai, R., Yamada, M., Chiba, T., Furumaya, K., Tsuchiya, Y.: A critical path delay check system. In: ACM/IEEE Design Automation Conference (DAC), pp. 118–123 (1981)Google Scholar
  49. 49.
    Pilling, D.J., Sun, H.B.: Computer-aided prediction of delays in LSI logic systems. In: ACM/IEEE Design Automation Conference (DAC), pp. 182–186 (1973)Google Scholar
  50. 50.
    Sasaki, T., Yamada, A., Aoyama, T., Hasegawa, K., Kato, S., Sato, S.: Hierarchical design verification for large digital systems. In: ACM/IEEE Design Automation Conference (DAC), pp. 105–112 (1981)Google Scholar
  51. 51.
    Hitchcock, R.B.: Timing verification and the timing analysis program. In: ACM/IEEE Design Automation Conference (DAC), pp. 594–604 (1982)Google Scholar
  52. 52.
    Hitchcock, R.B., Smith, G.L., Cheng, D.D.: Timing analysis of computer hardware. IBM Journal Research Development 26(1), 100–105 (1982)CrossRefGoogle Scholar
  53. 53.
    Maheshwari, N., Sapatnekar, S.S.: Timing Analysis and Optimization of Sequential Circuits. Kluwer Academic Publishers (1999)Google Scholar
  54. 56.
    Feldman, D., Fox, M.: Probability, The Mathematics of Uncertainty. Marcel Dekker, Inc (1991)MATHGoogle Scholar
  55. 55.
    Visweswariah, C., Ravindran, K., Kalafala, K., Walker, S., Narayan, S.: First-order incremental block-based statistical timing analysis. In: ACM/IEEE Design Automation Conference (DAC), pp. 331–336 (2004)Google Scholar
  56. 56.
    Feldman, D., Fox, M.: Probability, The Mathematics of Uncertainty. Marcel Dekker, Inc (1991)MATHGoogle Scholar
  57. 65.
    Clark, C.E.: The greatest of a finite set of random variables. Operations Research 9(2), 145–162 (1961)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Chang, H., Sapatnekar, S.S.: Statistical timing analysis considering spatial correlations using a single PERT-like traversal. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 621–625 (2003)Google Scholar
  59. 59.
    Agarwal, A., Zolotov, V., Blaauw, D.T.: Statistical timing analysis using bounds and selective enumeration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(9), 1243–1260 (2003)CrossRefGoogle Scholar
  60. 60.
    Devgan, A., Kashyap, C.: Block-based static timing analysis with uncertainty. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 607–614 (2003)Google Scholar
  61. 61.
    Zhang, L., Hu, Y., Chen, C.P.: Block based statistical timing analysis with extended canonical timing model. In: IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 250–253 (2005)Google Scholar
  62. 62.
    Zhan, Y., Strojwas, A.J., Li, X., Pileggi, L.T., Newmark, D., Sharma, M.: Correlation-aware statistical timing analysis with non-Gaussian delay distributions. In: ACM/IEEE Design Automation Conference (DAC), pp. 77–82 (2005)Google Scholar
  63. 63.
    Feng, Z., Li, P., Zhan, Y.: Fast second-order statistical static timing analysis using parameter dimension reduction. In: ACM/IEEE Design Automation Conference (DAC), pp. 244–249 (2007)Google Scholar
  64. 64.
    Zhang, L., Chen, W., Hu, Y., Gubner, J.A., Chen, C.C.P.: Correlation-preserved non-Gaussian statistical timing analysis with quadratic timing model. In: ACM/IEEE Design Automation Conference (DAC), pp. 83–88 (2005)Google Scholar
  65. 65.
    Clark, C.E.: The greatest of a finite set of random variables. Operations Research 9(2), 145–162 (1961)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Singh, J., Sapatnekar, S.: Statistical timing analysis with correlated non-Gaussian parameters using independent component analysis. In: ACM/IEEE Design Automation Conference (DAC), pp. 155–160 (2006)Google Scholar
  67. 67.
    Singh, J., Sapatnekar, S.S.: A scalable statistical static timing analyzer incorporating correlated non-Gaussian and Gaussian parameter variations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(1), 160–173 (2008)CrossRefGoogle Scholar
  68. 68.
    Li, X., Le, J., Gopalakrishnan, P., Pileggi, L.T.: Asymptotic probability extraction for non-normal distributions of circuit performance. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2004)Google Scholar
  69. 69.
    Chang, H., Zolotov, V., Narayan, S., Visweswariah, C.: Parameterized block-based statistical timing analysis with non-Gaussian parameters, nonlinear delay functions. In: ACM/IEEE Design Automation Conference (DAC), pp. 71–76 (2005)Google Scholar
  70. 70.
    Agarwal, A., Blaauw, D., Zolotov, V., Vrudhula, S.: Statistical timing analysis using bounds. In: Design, Automation and Test in Europe (DATE), pp. 62–67 (2003)Google Scholar
  71. 71.
    Agarwal, A., Blaauw, D., Zolotov, V., Vrudhula, S.: Computation and refinement of statistical bounds on circuit delay. In: ACM/IEEE Design Automation Conference (DAC), pp. 348–353 (2003)Google Scholar
  72. 72.
    Agarwal, A., Blaauw, D., Zolotov, V., Sundareswaran, S., Zhao, M., Gala, K., Panda, R.: Path-based statistical timing analysis considering inter- and intra-die correlations. In: ACM/IEEE International Workshop on Timing Issues in the Specification and Synthesis of Digital Systems (TAU), pp. 16–21 (2002)Google Scholar
  73. 73.
    Orshansky, M., Bandyopadhyay, A.: Fast statistical timing analysis handling arbitrary delay correlations. In: ACM/IEEE Design Automation Conference (DAC), pp. 337–342 (2004)Google Scholar
  74. 74.
    Li, X., Le, J., Celik, M., Pileggi, L.T.: Defining statistical timing sensitivity for logic circuits with large-scale process and environmental variations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(6), 1041–1054 (2008)CrossRefGoogle Scholar
  75. 75.
    Mukhopadhyay, S., Raychowdhury, A., Roy, K.: Accurate estimation of total leakage current in scaled CMOS logic circuits based on compact current modeling. In: DAC ’03: Proceedings of the 40th annual Design Automation Conference, pp. 169–174. ACM, New York, NY, USA (2003). DOI 10.1145/775832.775877Google Scholar
  76. 76.
    Kao, J., Narendra, S., Chandrakasan, A.: Subthreshold leakage modeling and reduction techniques. In: Proc. ICCAD, 2002, pp. 141–148 (2002)CrossRefGoogle Scholar
  77. 77.
    Acar, E., Devgan, A., Nassif, S.R.: Leakage and leakage sensitivity computation for combinational circuits. Journal of Low Power Europe 1(2), 1–10 (2005)Google Scholar
  78. 78.
    Jiang, W., Tiwari, V., de la Iglesia, E., Sinha, A.: Topological analysis for leakage prediction of digital circuits. In: Design Automation Conference, 2002. Proceedings of ASP-DAC 2002. 7th Asia and South Pacific and the 15th International Conference on VLSI Design. Proceedings., pp. 39–44 (2002)Google Scholar
  79. 79.
    Rao, R.R., Devgan, A., Blaauw, D., Sylvester, D.: Parametric yield estimation considering leakage variability. In: Proc. DAC 2004, pp. 442–447 (2004)Google Scholar
  80. 80.
    Favalli, M., Benini, L.: Analysis of glitch power dissipation in CMOS ICs. In: ISLPED ’95: Proceedings of the 1995 international symposium on Low power design, pp. 123–128. ACM, New York, NY, USA (1995). DOI 10.1145/224081.224103Google Scholar
  81. 81.
    Najm, F., Burch, R., Yang, P., Hajj, I.: CREST - a current estimator for CMOS circuits. In: IEEE International Conference on Computer-Aided Design, pp. 204–207 (1988)Google Scholar
  82. 82.
    Wang, L., Olbrich, M., Barke, E., Büchner, T., Bühler, M.: Fast dynamic power estimation considering glitch filtering. In: SOCC, pp. 361–364 (2009)Google Scholar
  83. 83.
    Häußler, R., Kinzelbach, H.: Sensitivity-based stochastic analysis method for power variations. In: ITG Fachbericht 196, 9. ITG/GMM-Fachtagung, ANALOG’06, Entwicklung von Analogschaltungen mit CAE-Methoden, pp. 125–130. Dresden (2006)Google Scholar
  84. 84.
    SAE International, Electronic Design Automation Standards Committee: J2748 VHDL-AMS Statistical Packages (2006)Google Scholar
  85. 85.
    Christen, E., Bedrosian, D., Haase, J.: Statistical modeling with VHDL-AMS. In: Forum on Specification and Design Languages, FDL’07, pp. 44–49. ECSI, Barcelona (2007)Google Scholar
  86. 86.
    Synopsys, Inc.: PrimeTime User Guide, B-2008.12 edn. (2008)Google Scholar
  87. 87.
    Dietrich, M., Eichler, U., Haase, J.: Digital statistical analysis using VHDL. In: Design, Automation & Test in EuropeDATE’10, pp. 1007–1010. Dresden, Germany (2010). URL http://www.date-conference.com/proceedings/PAPERS/2010/DATE10/PDFFILES/08.1_3.PDF
  88. 88.
    Schenkel, F., Pronath, M., Zizala, S., Schwencker, R., Graeb, H., Antreich, K.: Mismatch analysis and direct yield optimization by spec-wise linearization and feasibility-guided search. In: DAC, pp. 858–863 (2001)Google Scholar
  89. 89.
    Graeb, H., Zizala, S., Eckmueller, J., Antreich, K.: The sizing rules method for analog integrated circuit design. In: ICCAD, pp. 343–349 (2001)Google Scholar
  90. 90.
    Stehr, G., Pronath, M., Schenkel, F., Graeb, H., Antreich, K.: Initial sizing of analog integrated circuits by centering within topology-given implicit specifications. In: ICCAD (2003)Google Scholar
  91. 91.
    Rooch, K.H., Sobe, U., Pronath, M.: Circuit design-for-yield (DFY) for a 110dB Op-Amp for automotive and sensor applications. In: ITG Fachbericht 196, 9. ITG/GMM-Fachtagung, ANALOG’06, Entwicklung von Analogschaltungen mit CAE-Methoden, pp. 119–123. Dresden (2006)Google Scholar
  92. 92.
    Schwencker, R., Schenkel, F., Graeb, H., Antreich, K.: The generalized boundary curve – A common method for automatic nominal design and design centering of analog circuits. In: DATE, pp. 42–47 (2000)Google Scholar
  93. 93.
    Antreich, K.J., Graeb, H.E.: Circuit optimization driven by worst-case distances. In: The Best of ICCAD – 20 Years of Excellence in Computer-Aided Design, pp. 585–595. Kluwer Academic Publishers (2003)Google Scholar
  94. 94.
    Montgomery, D.: Design and Analysis of Experiments, 3rd edn. John Wiley & Sons, New York (1991)MATHGoogle Scholar
  95. 95.
    Sohrmann, C., Muche, L., Haase, J.: Accurate approximation to the probability of critical performance. In: 2. GMM/GI/ITG-Fachtagung Zuverlässigkeit und Entwurf, pp. 93–97 (2008)Google Scholar
  96. 96.
    Pehl, M., Graeb, H.: RaGAzi: A random and gradient-based approach to analog sizing for mixed discrete and continuous parameters. In: Integrated Circuits, ISIC ’09. Proceedings of the 2009 12th International Symposium on, pp. 113–116 (2009)Google Scholar
  97. 97.
    Hartung, J.: Statistik: Hand- und Lehrbuch der angewandten Statistik, 12 edn. R. Oldenbourg (1999)Google Scholar
  98. 98.
    Kotz, S., Johnson, N.: Process capability indices. Chapman & Hall, London (1993)Google Scholar
  99. 99.
    Rinne, H., Mittag, H.J.: Prozessfähigkeitsmessung für die industrielle Praxis. Hanser (1999)Google Scholar
  100. 100.
    Aftab, S., Styblinski, M.: IC variability minimization using a new C p and C pk based variability/performance measure. In: ISCAS ’94., 1994 IEEE International Symposium on Circuits and Systems, vol. 1, pp. 149–152 (1994)Google Scholar
  101. 101.
    ISO 21747: Statistical methods – Process performance and capability statistics for measured quality characteristics (2006)Google Scholar
  102. 102.
    Bennett, B.: On multivariate coefficients of variation. Statistical Papers 18(2), 123–128 (1977). Springer, BerlinGoogle Scholar
  103. 103.
    Lange, A., Muche, L., Haase, J., Mau, H.: Robustness characterization of standard cell libraries. In: DASS 2010 – Dresdner Arbeitstagung Schaltungs- und Systementwurf, pp. 13–18 (2010)Google Scholar
  104. 104.
    Marques de Sá, J.: Applied Statistics Using SPSS, STATISTICA, MATLAB and R, 2nd edn. Springer (2007)Google Scholar
  105. 105.
    International Technology Roadmap for Semiconductors: System drivers (2007)Google Scholar
  106. 106.
    Borel, J. (ed.): European Design Automation Roadmap. Parais (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christoph Knoth
    • 1
  • Ulf Schlichtmann
    • 1
  • Bing Li
    • 1
  • Min Zhang
    • 2
  • Markus Olbrich
    • 2
  • Emrah Acar
    • 3
  • Uwe Eichler
    • 4
  • Joachim Haase
    • 4
  • André Lange
    • 4
  • Michael Pronath
    • 5
  1. 1.Institute for Electronic Design AutomationTechnische Universität MünchenMunichGermany
  2. 2.Institute of Microelectronic SystemsLeibniz University of HannoverHannoverGermany
  3. 3.Research Staff Member, IBM ResearchIBM T. J. Watson Research CenterYorktown HeightsUSA
  4. 4.Design Automation Division EASFraunhofer Institute for Integrated Circuits IISDresdenGermany
  5. 5.MunEDA GmbHMunichGermany

Personalised recommendations