Advertisement

Beads and Special Applications of Polymers for Agricultural Uses

  • Amos Nussinovitch
Chapter

Abstract

The concept of bead encapsulation has become highly relevant to agriculture. Beads can encapsulate microorganisms for use in the field of bacterial- inoculation technology. Immobilized plant cell suspensions and single seed products have proven to be easy to produce, store, and handle during industrial operation. This chapter describes the goals of encapsulation in agriculture,: e.g., to temporarily protect the encapsulated microorganisms from the soil environment and microbial competition and to release them gradually for the colonization of plant roots. Special cases for enlarging populations in which the entrapped bacterial biomass is low are described; other cases in which, for example, immobilized fungi are used as biocontrol agents against soil-borne pathogens are thoroughly detailed; survival of bead-entrapped populations is compared with that of populations encapsulated in peat, and the influence of special additives on bacterial survival isare described. In addition, timing and methods for the application of bacterial inoculants are delineated. In particular, topics such as carriers for the slow release of bacteria that affect plant growth, inoculation of seedlings and plants with beads containing fungal inoculum, joint immobilization of plant -growth-promoting bacteria and green microalgae, cryopreservation by encapsulation/dehydration technique, and controlled release of agricultural chemicals are discussed at length. The chapter also supports the reader with a list of biotechnological applications such as gene-delivery systems using beads, bioactive bead methods for obtaining transgenic plants and in synthetic seed technology, and describes unique applications of polymers, including superabsorbent polymers and seed coating.

Keywords

Somatic Embryo Arbuscular Mycorrhizal Fungus Sodium Alginate Alginate Bead Synthetic Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aburjal, T., Bernasconi, S., Manzocchi, L. A., and Pelizzoni, F. 1997. Effect of calcium and cell immobilization on the production of choleocalciferol and its derivatives by Solanum malacoxylon cell cultures. Phytochemistry 46:1015–1018.CrossRefGoogle Scholar
  2. Adriani, M., Piccioni, E., and Standardi, A. 2000. Effects of different treatments on the conversion of ‘Hayward’ kiwifruit synthetic seeds to whole plants following encapsulation of in vitro derived buds. New Zeal. J. Crop Hort. Sci. 28:59–67.CrossRefGoogle Scholar
  3. Albrecht, S. L., Okon, Y., Lonnquist, J., and Burms, R. H. 1981. Nitrogen-fixation by corn-Azospirillum associations in a temperate climate. Crop Sci. 21:301–306.CrossRefGoogle Scholar
  4. Allan, G. G., Beer, J. W., Cousin, M. J., and Mikels, R. A. 1980. The biodegradative controlled release of pesticides from polymeric substrates. In: Controlled Release Technologies: Methods, Theory and Applications, vol. II, ed. A. F. Kydonieus,  chap. 2, pp. 7–62. Boca Raton, FL: CRC.iGoogle Scholar
  5. Ara, H., Jaiswal, U., and Jaiswal, V. S. 2000. Synthetic seed: prospects and limitations. Curr. Sci. 78:1438–1444.Google Scholar
  6. Bajaj, Y. P. S. 1990a. Cryopreservation of germplasm of wheat. In: Biotechnology in Agriculture and Forestry, vol. 13: Wheat, ed. Y. P. S. Bajaj, pp. 670–681. Berlin, Heidelberg, New York: Springer.Google Scholar
  7. Bajaj, Y. P. S. 1990b. Cryopreservation of germplasm of legumes and oilseed crops. In: Biotechnology in Agriculture and Forestry, vol. 10: Legume and Oil Seeded Crops I, ed. Y. P. S. Bajaj, pp. 49–62. Berlin, Heidelberg, New York: Springer.Google Scholar
  8. Bajaj, Y. P. S., and Sala, F. 1991. Cryopreservation of germplasm of rice. In: Biotechnology in Agriculture and Forestry, vol. 14: Rice, ed. Y. P. S. Bajaj, pp. 553–571. Berlin, Heidelberg, New York: Springer.Google Scholar
  9. Bashan, Y. 1986. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Env. Microbiol. 51:1089–1098.Google Scholar
  10. Bashan, Y., Hernandez, J. P., Leyva, L. A., and Bacilio, M. 2002. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fert. Soils 35:359–368.CrossRefGoogle Scholar
  11. Bhattacharya, R., and Bhattacharya, S. 2001. High frequency in vitro propagation of Phyllanthus amarus Schum & Thonn by culture. Ind. J. Exp. Biol. 39:1184–1187.Google Scholar
  12. Birnbaum, S., Pendleton, R., Larsson, P. O., and Mosbach. K. 1981. Covalent stabilization of alginate gel for the entrapment of living whole cells. Biotechnol. Lett. 8:393–400.CrossRefGoogle Scholar
  13. Borchard, G. 2001. Chitosans for gene delivery. Adv. Drug Deliv. Rev. 52:145–150.CrossRefGoogle Scholar
  14. Boussif, O., Lezouak’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J.-P. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92:7297–7301.CrossRefGoogle Scholar
  15. Brischia, R., Piccioni, E., and Standardi, A. 2002. A new protocol for production of encapsulated differentiating propagules. Plant Cell Tiss. Organ Cult. 68:137–141.CrossRefGoogle Scholar
  16. Brodelius, p. 1983. Immobilized plant cells. In: Immobilized Cells and Organelles, vol. 1, ed. B. Mattiasson, pp. 27–55. Boca Raton, FL: CRC Press.Google Scholar
  17. Brodelius, p. 1985. The potential role of immobilization in plant cell biotechnology. Trends Biotechnol. 3:280–285.CrossRefGoogle Scholar
  18. Brodelius, P., and Mosbach, K. 1982. Immobilized plant cells. In: Advances in Applied Microbiology, vol. 28, ed. A. Laskin, pp. 1–26. New York: Academic.CrossRefGoogle Scholar
  19. Brodelius, P., and Nilsson, K. 1980. Entrapment of plant cells in different matrix. FEBS Lett. 122:312–316.CrossRefGoogle Scholar
  20. Calixto, J. B., Santos, A. R. S., Cechinel, F. V., and Yunes, R. A. 1998. A review of the plants of the genus Phyllanthus: their chemistry, pharmacology and therapeutic potential. Res. Med. Rev. 4:225–228.CrossRefGoogle Scholar
  21. Chand, S., and Singh, A. K. 2004. Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb.—a timber-yielding leguminous tree. J. Plant Physiol. 161: 237–243.CrossRefGoogle Scholar
  22. Chen, J. L., and Beversdorf, W. D. 1992. Cryopreservation of isolated microspores of spring rapeseed (Brassica napus L.) for in vitro embryo production. Plant Cell Tiss. Organ Cult. 31:141–149.CrossRefGoogle Scholar
  23. Chibata, I., and Tosa, T. 1977. Transformation of organic compounds by immobilized microbial cells. Adv. Appl. Microbiol. 22:1–27.CrossRefGoogle Scholar
  24. Cornejo-Martin, J., Wong, V. L., and Blech, A. E. 1995. Cryopreserved callus: a source of protoplast for rice transformation. Plant Cell Rep. 14:210–214.Google Scholar
  25. Cottrell, I. W., and Kovacs, p. 1977. Algin. In: Food Colloids, ed. H. D. Graham, pp. 438–463.Westport, CT: AVI Publishing Co.Google Scholar
  26. Coulibaly, Y., and Demarly, Y. 1979. Androgenese in vitro chez Oryza sativa var. Cigalon a partir d´antheres conservees dans l’azote liquide (21968C). L’Agronomie Tropicale 34:74–79.Google Scholar
  27. Dandurand, L. M., and Knudsen, G. R. 1993. Influence of Pseudomonas fluorescens on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83:265–270.CrossRefGoogle Scholar
  28. Danso, K. E., and Ford-Lloyd, B. V. 2003. Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm. Plant Cell Rep. 21:718–725.Google Scholar
  29. de-Bashan, L. E., and Bashan, Y. 2008. Joint Immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl. Env. Microbiol. 74:6797–6802.CrossRefGoogle Scholar
  30. Declerck, S., Risede, J. M., and Delvaux, B. 2002. Greenhouse response of micropropagated bananas inoculated with in vitro monoxenically produced arbuscular mycorrhizal fungi. Sci. Hort. 93:301–309.CrossRefGoogle Scholar
  31. Dommergues, Y. R., Diemn, H. G., and Divies, C. 1979. Polyacrylamide-entrapped Rhizobium as an inoculant for legumes. Appl. Environ. Microbiol. 37:779–781.Google Scholar
  32. Dornenburg, H., and Knorr, D. 1995. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb. Technol. 17:674–684.CrossRefGoogle Scholar
  33. Engelmann, F. 1997. In vitro conservation methods. In: Biotechnology and Plant Genetic Resources: Conservation and Use, ed. J. A. Callow, B. V. Ford-Lloyd, H. J. Newbury, pp. 119–161. Wallingford, UK: CAB International.Google Scholar
  34. Fabre, J., and Dereuddre, J. 1990. Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot-tips. CryoLetters 11:413–426.Google Scholar
  35. Fages, J. 1989. An optimized process for manufacturing an Azospirillum inoculant for crops. Appl. Microbiol. Biotechnol. 32:473–478.Google Scholar
  36. Ferraris, R. 1989. Gel seeding of sorghum into Mywybilla clay. Proc. Aust. Sorghum Workshop, Toowoomba, Queensland, 28 Feb-1 Mar, Occasional Publications, Australian Institute of Agricultural Science No. 43, ed. M. A. Foale, B. W. Hare, R.G Henzell. Brisbane, Queensland, Australia: Australian Institute of Agricultural Science.Google Scholar
  37. Fortin, J. A., Bécard, G., Declerck, S., Dalpé, Y., St. Arnaud, M., Coughlan, A. P., and Piché, Y. 2002. Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. 80:1–20.CrossRefGoogle Scholar
  38. Fravel, D. R., Marois, J. J., Lumsden, R. D., and Connick, Jr., W. J. 1985. Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75:774–777.CrossRefGoogle Scholar
  39. Fukui, S., and Tanaka, A. 1982. Immobilized microbial cells. Annu. Rev. Microbiol. 36:145–172.CrossRefGoogle Scholar
  40. Garrett, R. E., Mehlschau, J. J., Smith, N. E., and Redenbaugh, M. K. 1991. Gel encapsulation of tomato seeds. Appl. Eng. Agric. 7:25–31.Google Scholar
  41. Garrett, R. E., Shafii, S., and Upadhyaya, S. K. 1994. Encapsulation of seeds in gel by impact. Appl. Eng. Agric. 10:183–187. (Presented as ASAE paper No. 92-1073.)Google Scholar
  42. Garrett, R. E., Smith, N. E., and Mehlschau, J. J. 1989. Apparatus and method for encapsulating seeds and the like. U.S. Patent #4, 806,357.Google Scholar
  43. Ghanti, K. S., Govindaraju, B., Venagopal, R. B., Rao, S. R., Kaviraj, C. P., and Jabeen, F. T. Z. 2004. High frequency shoot regeneration from Phyllanthus amarus Schum & Thom. Ind. J. Biotechnol. 3:103–107.Google Scholar
  44. Gilleta, F., Roisin, C., Fliniaux, M. A., Jacquin-Dubreuil, A., Barbotin, J. N., and Nava-Saucedo, J. E. 2000. Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enzyme Microbial Technol. 26:229–234.CrossRefGoogle Scholar
  45. Godbey, W. T., Wu, K. K., and Mikos, A. G. 1999. Tracking the intracellular path of poly (ethylenimine)/DNA complexes for gene delivery. Proc. Natl Acad. Sci. USA 96:5177–5181.CrossRefGoogle Scholar
  46. Gonzalez, L. E., and Bashan, Y. 2000. Growth promotion of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 66:1527–1531.CrossRefGoogle Scholar
  47. Hackel, U., Klein, J., Megnet, R., and Wagner, F. 1975. Immobilization of microbial cells in polymeric matrices. Eur. J. Appl. Microbiol. 1:291–293.CrossRefGoogle Scholar
  48. Harris, F. W. 1975. Polymers containing pendent herbicide substituents. In: Proceedings of the International Controlled Release Pesticide Symposium, pp 334–382. Wright State University, Dayton, OH.Google Scholar
  49. Heiskanen, J. 1993. Favorable water and aeration conditions for growth media used in containerized tree seedling production: a review. Scand. J. For. Res. 8:337–358.CrossRefGoogle Scholar
  50. Herrett, R. A., and King, P. A. 1967. (to Union Carbide Corp.) Plant growth medium. U.S. Patent #3,336,129.Google Scholar
  51. Higashiyama, T., and Yamada, Y. 1991. Electrophoretic karyotyping and chromosomal gene mapping of Chlorella. Nucleic Acids Res. 19:6191–6195.CrossRefGoogle Scholar
  52. Honig, K., Riefler, M., and Kottke, I. 2000. Survey of Paxillus involutus (Batsch) Fr. inoculum and fruitbodies in a nursery by IGS-RFLPs and IGS sequences. Mycorrhiza 9:315–322.CrossRefGoogle Scholar
  53. Hosono, H., Uemura, I., Takumi, T., Nagamune, T., Yasuda, T., Kishimoto, M., Nagashima, H., Shimomura, N., Natori, M., and Endo, I. 1994. Effect of culture temperature shift on the cellular sugar accumulation of Chlorella vulgaris SO-26. J. Ferment. Bioeng. 78:235–240.CrossRefGoogle Scholar
  54. Ilangovan, K., Canizares-Villanueva, R. O., Gonzalez Moreno, S., and Voltolina, D. 1998. Effect of cadmium and zinc on respiration and photosynthesis in suspended and immobilized cultures of Chlorella vulgaris and Scenedesmus acutus. Bull. Environ. Contam. Toxicol. 60: 936–943.CrossRefGoogle Scholar
  55. Ingleby, K., Wilson, J., Mason, P. A., and Munro, R. C. 1994. Effects of mycorrhizal inoculation and fertilizer regime on emergence of Sitka spruce seedlings in bare-root nursery seedbeds . Can. J. For. Res. 24:618–623.CrossRefGoogle Scholar
  56. Jaizme-Vega, M. C., Esquivel Delamo, M., Tenoury Dominguez, P., and Rodriguez Romero, A. S. 2002. Effects of mycorhization on the development of two cultivars of micropropagated banana. InfoMusa 11:25–28.Google Scholar
  57. Jaizme-Vega, M. C., Rodrıguez-Romero, A. S., Marın Hermoso, C., and Declerck, S. 2003. Growth of micropropagated bananas colonized by root-organ culture produced arbuscular mycorrhizal fungi entrapped in Ca- alginate beads. Plant Soil 254:329–335.CrossRefGoogle Scholar
  58. Jolicoeur, M., Williams, R. D., Chavarie, C., Fortin, J. A., and Archambault, J. 1999. Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnol. Bioeng. 63:224–232.CrossRefGoogle Scholar
  59. Jones, M. D., Durall, D. M., and Cairney, J. W. G. 2003. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157:399–422.CrossRefGoogle Scholar
  60. Jung, G., Mugnier, J., Diem, H. G., and Dommergues, Y. R. 1982. Polymer-entrapped rhizobium as an inoculant for legumes. Plant Soil 65:219–231.CrossRefGoogle Scholar
  61. Kaeppler, H., Gu, W., Somers, D., Rines, H., and Cockburn, A. 1990. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 9:415–418.CrossRefGoogle Scholar
  62. Kapulnik, Y., Sarig, S., Nur, I., Okon, Y., Kigel, J., and Henis, Y. 1981. Yield increases in summer cereal crops in Israeli fields inoculated with Azospirillum. Exp. Agric. 17:179–187.CrossRefGoogle Scholar
  63. Kenney, D. S. 1997. Commercialization of biological control products in the chemical pesticide world. In: Plant Growth-Promoting Rhizobacteria—Present Status and Future Prospects, ed. Ogoshi, A., Kobayashi, K., Homma, Y., Kodama, F., Kondo, N., Akino, S., pp 126–127. Sapporo, Japan: Faculty of Agriculture, Hokkaido University.Google Scholar
  64. Kersulec, A., Bazinet, C., Corbiueau, F., Come, D., Barbotin, J. N., Hervagault, J. F., and Thomas, D. 1993. Physiological behavior of encapsulated somatic embryos. Biomater. Artif. Cells Immobilization Biotechnol. 21:375–381.Google Scholar
  65. Kirk, P. M., Cannon, P. F., David, J. C., and Stalpers, J. 2001. Ainsworth and Bisby’s Dictionary of the Fungi, 9th edn. Wallingford, UK: CAB International.Google Scholar
  66. Kropacek, K., and Cudlin, p. 1989. Preparation of granulated mycorrhizal inoculum and its use in forest nurseries. In: Interrelationships Between Microorganisms and Plants in Soil, ed. V. Vančura, F. Kunc, pp. 177–182. Praha: Academia.CrossRefGoogle Scholar
  67. Kropp, B. R., and Langlois, C. G. 1990. Ectomycorrhizae in reforestation. Can. J. For. Res. 20:438–451.CrossRefGoogle Scholar
  68. Kydonieus, A. F., 1980. Controlled Release Technologies: Methods, Theory and Applications, vols I and II. Boca Raton, FL: CRC Press, Inc.Google Scholar
  69. Lebsky, V. K., Gonzalez-Bashan, L. E., and Bashan, Y. 2001. Ultrastructure of co-immobilization of the microalga Chlorella vulgaris with the plant growth-promoting bacterium Azospirillum brasilense and with its natural associative bacterium Phyllobacterium myrsinacearum in alginate beads. Can. J. Microbiol. 47:1–8.Google Scholar
  70. Le Tacon, F., Jung, G., Mugnier, J., Michelot, P., and Mauperin, C. 1985. Efficiency in a forest nursary of an ectomycorrhizal fungus inoculum produced in a fermentor and entrapped in polymeric gels. Can. J. Bot. 63:1664–1668.CrossRefGoogle Scholar
  71. Lisek, A., and Olikowska, T. 2004. In vitro storage of strawberry and raspberry in calcium-alginate beads at 48C. Plant Cell Tiss. Organ Cult. 78:167–172.CrossRefGoogle Scholar
  72. Liu, H., Kawabe, A., Matsunaga, S., Murakawa, T., Mizukami, A., Yanagisawa, M., Nagamori, E., Harashima, S., Kobayashi, A., and Fukui, K. 2004. Obtaining transgenic plants using the bio-active beads method. J. Plant Res. 117:95–99.CrossRefGoogle Scholar
  73. Manoj, K. R., Pooja, A., Kant, S. S., Jaiswal, V. S., and Jaiswal, U. 2009. The encapsulation technology in fruit plants—a review. Biotechnol. Adv. 27:671–679.Google Scholar
  74. Marassi, A. M., Scocchi, A., and Gonzalez, A. M. 2006. Plant regeneration from rice anthers cryopreserved by an encapsulation/dehydration technique. In Vitro Cell. Dev. Biol. Plant 42:31–36.CrossRefGoogle Scholar
  75. Mark, H. F., Bikales, N. M., Overberger, C. G., Menges, G., and Kroschwitz, J. I. 1985. In Encyclopedia of Polymer Science and Engineering, vol. 1, pp. 611–621. New York: Wiley-Interscience.Google Scholar
  76. Maruyama, E., Kinoshita, I., Ishii, K., Shigenaga, H., Ohba, K., and Saito, A. 1997. Alginate-encapsulation technology for the propagation of the tropical forest trees: Cedrela odorata L., Guazuma crinita Mart., Jacaranda mimosaefolia D. Don. Silvae Genet. 46:17–23.Google Scholar
  77. Mihal, I. 1999. Production of fruiting bodies of ectomycorrhizal fungi in spruce monocultures planted on former arable lands. Ekológia 18:125–133.Google Scholar
  78. Millet, E., and Feldman, M. 1984. Yield response of a common spring wheat cultivar to inoculation with Azospirillum brasilense at various levels of nitrogen fertilization. Plant Soil 80: 255–259.CrossRefGoogle Scholar
  79. Mizukami, A., Nagamori, E., Takakura, Y., Matsunaga, S., Kaneko, Y., Kajiyama, S., Harashima, S., Kobayashi, A., and Fukui, K. 2003. Transformation of yeast using calcium alginate microbeads with surface-immobilized chromosomal DNA. BioTechniques 35:734–740.Google Scholar
  80. Mortier, F., Le Tacon , F., and Garbaye, J. 1988. Effect of inoculum type and inoculation dose on ectomycorrhizal development, root necrosis and growth of Douglas fir seedlings inoculated with Laccaria laccata in a nursery. Ann. Sci. For. 45:301–310.CrossRefGoogle Scholar
  81. Moukadiri, O., Connor, J. E., and Cornejo, M. J. 1999. Phenotypic characterization of the progenies of rice plants derived from cryopreserved calli. Plant Cell Rep. 18:625–632.CrossRefGoogle Scholar
  82. Moutoglis, P., and Béland, M. 2001. PTB’s research report. In: Proceedings of the ICOM-3 Conference, Section P1, p. 26. Adelaide, South Australia, 8–13 July, 2001.Google Scholar
  83. Muguier, J., and Jung, G.. 1985. Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl. Environ. Microbiol. 50:108–114.Google Scholar
  84. Mukunthakumar, S., and Mathur, J., 1992. Artificial seed production in the male bamboo Dendrocalamus strictus L. Plant Sci. Limerick 87:109–113.CrossRefGoogle Scholar
  85. Nahakpam, S., Singh, P., and Shah, K. 2008. Effect of calcium on immobilization of rice (Oryza sativa L.) peroxidase for bioassays in sodium alginate and agarose gel. Biotechnol. Bioprocess Eng. 13:632–638.CrossRefGoogle Scholar
  86. Nipoti, P., Manzali, D., Gennari, S., D’Ercole, N., and Rivas, F. 1990. Activity of Trichoderma harzianum Rifai on the germination of asparagus seeds: I. Seed treatments. Acta Hort. 271: 403–407.Google Scholar
  87. Nussinovitch, A. 1997. Hydrocolloid Applications: Gum Technology in the Food and Other Industries. London and Weinheim: Blackie Academic & Professional.CrossRefGoogle Scholar
  88. Oh-Hama, T., and Miyachi, S. 1992. Chlorella. In: Microalgal Biotechnology, ed. M. A. Borowitzka, L. J. Borowitzka, pp. 3–26. Cambridge, UK: Cambridge University Press.Google Scholar
  89. Okon, Y. 1985. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3: 223–228.CrossRefGoogle Scholar
  90. Oleskog, G., Grip, H., Bergsten, U., and Sahlen, K. 2000. Seedling emergence of Pinus sylvestris in characterized seedbed substrates under different moisture conditions. Can. J. For. Res. 30:1766–1777.CrossRefGoogle Scholar
  91. Ostonen, I., and Lohmus, K. 2003. Proportion of fungal mantle, cortex and stele of ectomycorrhizas in Picea abies (L.) Karst. in different soils and site conditions. Plant Soil 257: 435–442.CrossRefGoogle Scholar
  92. Oswald, W. J. 1992. Microalgae and wastewater treatment. In: Microalgal Biotechnology, ed. M. A. Borowitzka, L. J. Borowitzka, pp. 305–328. Cambridge, UK: Cambridge University Press.Google Scholar
  93. Ouchi, S. 2001. Characteristics of superabsorbent polymer (SAP)-mixed soil. In: Gels Handbook, vol. 3: Applications, ed. Y. Osada, K. Kajiwara, pp. 261–275. San Diego and San Francisco: Academic.CrossRefGoogle Scholar
  94. Parlade, J., Alvarez , I. F., and Pera , J. 1999. Coinoculation of containerized Douglas-fir (Pseudotsuga menziesii) and maritime pine (Pinus pinaster) seedlings with the ectomycorrhizal fungi Laccaria bicolor and Rhizopogon spp. Mycorrhiza 8:189–195.CrossRefGoogle Scholar
  95. Pattnaik, S., and Chand, P. K. 2000. Morphogenic response of the alginate encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tiss. Organ Cult. 60:177–185.CrossRefGoogle Scholar
  96. Paul, D. R. 1976. Controlled release polymeric formulations. In: American Chemical Society Symposium Series No. 33, p. 2. Washington, D.C: American Chemical Society.Google Scholar
  97. Rakoczy-Trojanowaka, M. 2002. Alternative methods of plant transformation—a short review. Cell Mol. Biol. Lett. 7:849–858.Google Scholar
  98. Ramazanov, A., and Ramazanov. Z. 2006. Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol. Res. 54:255–259.CrossRefGoogle Scholar
  99. Ren, N., and Timko, M. p. 2001. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571.Google Scholar
  100. Repac, I. 2007. Ectomycorrhiza formation and growth of Picea abies seedlings inoculated with alginate-bead fungal inoculum. Forestry 80:517–530.CrossRefGoogle Scholar
  101. Reynders, L., and Vlassak, K. 1982. Use of Azospirillum brasilense as biofertilizer in intensive wheat cropping. Plant Soil 66:217–223.CrossRefGoogle Scholar
  102. Richmond, A. 1990. Handbook of Microalgal Mass Culture. Boca Raton, FL: CRC Press.Google Scholar
  103. Rincon, A., Parlade, J., and Pera, J. 2005. Effects of ectomycorrhizal inoculation and the type of substrate on mycorrhization, growth and nutrition of containerized Pinus pinea L. seedlings produced in a commercial nursery. Ann. For. Sci. 62:817–822.CrossRefGoogle Scholar
  104. Rizzo, W. B., Schulman, J. D., and Mukherjee, A. B. 1983. Liposome- mediated transfer of simian virus 40 DNA and minichromosome into mammalian cells. J. Gen. Virol. 64:911–919.CrossRefGoogle Scholar
  105. Rodicio, M. R., and Chater, K. F. 1982. Small DNA-free liposomes stimulate transfection of streptomyces protoplasts. J. Bacteriol. 151:1078–1085.Google Scholar
  106. Romaine, C. P., and Schlagnhaufer, B. 1992. Characteristics of a hydrated alginate-based delivery system for cultivation of the button mushroom. Appl. Environ. Microbiol. 58:3060–3066.Google Scholar
  107. Sarig, S., Kapulnik, Y., Nur, I., and Okon, Y. 1984. Response of non-irrigated Sorghum bicolor to Azospirillum inoculation. Exp. Agric. 20:59–66.CrossRefGoogle Scholar
  108. Seki, M., Ohzora, C., Takeda, M., and Furusaki, S. 1997. Taxol (paclitaxel) production using free and immobilized cells of Taxus cuspidata. Biotechnol. Bioeng. 53:214–219.CrossRefGoogle Scholar
  109. Singh, A. K., Sharma, M., Varshney, R., Agarwal, S. S., and Bansal, K. C. 2006a. Plant regeneration from alginate-encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. In Vitro Cell. Dev. Biol. Plant 42:109–113.Google Scholar
  110. Singh, A. K., Varshney, R., Sharma, M., Agarwal, S. S., and Bansal, K. C. 2006b. Regeneration of plants from alginate-encapsulated shoot tips of Withania somnifera (L.) Dunal, a medicinally important plant species. J. Plant Physiol. 163:220–223.CrossRefGoogle Scholar
  111. Smith, R. L., Schank, S. C., Milam, J. R., and Baltensperger, A. A. 1984. Responses of Sorghum and Pennisetum species to the N2-fixing bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 47:1331–1336.Google Scholar
  112. Sone, T., Nagamori, E., Ikeuchi, T., Mizukami, A., Takakura, Y., Kajiyama, S., Fukusaki, E., Harashima, S., Kobayashi, A., and Fukui, K. 2002. A novel gene delivery system in plant with calcium alginate micro-beads. J. Biosci. Bioeng. 94:87–91.Google Scholar
  113. Stamets, p. 2000. Growing Gourmet and Medical Mushrooms, 3rd ed. Berkeley CA: Ten Speed Press.Google Scholar
  114. Suryakusuma, H., and Jun, H. W. 1984. Encapsulated hydrophilic polymer beads containing indomethacin as controlled release drug delivery systems. J. Pharm. Pharmacol. 36:497–501.CrossRefGoogle Scholar
  115. Suvarnalatha, G., Chand, N., Ravishankar, G. A., and Venkataraman, L. V. 1993. Computer-aided modeling and optimization for capsaicinoid production by immobilized Capsicum frutescens cells. Enzyme Microb. Technol. 15:710–715.CrossRefGoogle Scholar
  116. Tammi, H., Timonen, S., and Sen, R. 2001. Spatiotemporal colonization of Scots pine roots by introduced and indigenous ectomycorrhizal fungi in forest humus and nursery Sphagnum peat microcosms. Can. J. For. Res. 31:746–756.CrossRefGoogle Scholar
  117. Thompson, J. A. 1980. Production and quality control of legume inoculants. In: Methods of Evaluating Biological Nitrogen Fixation, ed. F. J. Bergersen, pp. 489–533. New York: John Wiley & Sons, Inc.Google Scholar
  118. Towill, L. E., and Walters, C. 2000. Cryopreservation of pollen. In: Cryopreservation of Tropical Germplasm. Current Research Progress and Application, ed. F. Engelmann, H. Takagi, pp. 115–129. Ibarak, Japan: JIRCAS/IPGRI.Google Scholar
  119. Trivedi, P., and Pandey, A. 2008. Recovery of plant growth-promoting rhizobacteria from sodium alginate beads after 3 years following storage at 4°C. J. Ind. Microbiol. Biotechnol. 35: 205–209.CrossRefGoogle Scholar
  120. Van der Heijden , E. W., and Kuyper, T. W. 2001. Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant Soil 230:161–174.CrossRefGoogle Scholar
  121. Vanek, T., Valterova, I., Pospisilova, R., and Vaisar, T. 1994. The effect of immobilization on the course of biotransformation reactions by plant cells. Biotechnol. Lett. 8:289–294.Google Scholar
  122. Vanek, T., Valterova, I., Vankova, R., and Vaisar, T. 1999. Biotransformation of (2)-linomene using Solanum aviculare and Dioscorea deltoidea immobilized plant cells. Biotechnol. Lett. 21: 625–628.CrossRefGoogle Scholar
  123. Verpoorte, R., and Dihal, P. p. 1987. Medicinal plants of Surinam-IV. Antimicrobial activity of some medicinal plants. J. Ethnopharmacol. 21:315–318.CrossRefGoogle Scholar
  124. Verpoorte, R., van der Heijden, R., ten Hoopen, H. J. G., and Memelink, J. 1999. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol. Lett. 21:467–469.CrossRefGoogle Scholar
  125. Walker, H. L. 1981. Granular formulation of Alternaria macro-spora for control of spurred anoda (Anoda cristata). Weed Sci. 29:342–345.Google Scholar
  126. Walker, H. L., and Connick, W.J., Jr. 1983. Sodium alginate for production and formulation of mycoherbicides. Weed Sci. 31:333–338.Google Scholar
  127. Wang, B., and Qiu, Y. L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363.CrossRefGoogle Scholar
  128. Zhang, Y. X., Wang, J. H., Bian, H. W., and Zhu, M. 2001. Pregrowth-desiccation: a simple and efficient procedure for the cryopreservation of rice (Oryza sativa L.) embryogenic suspension cells. CryoLetters 22:221–229.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Biochemistry, Food Science and Human Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations