Medicinal Applications of Hydrocolloid Beads

  • Amos Nussinovitch


This chapter gathers together information culled from many sources. It describes the use of cells encapsulated in hydrogels, stem cells in bead environments, charged hydrogel beads as new microcarriers for cell culture, as a potential support for endothelial cells, and for vaccine delivery. Other sections provide information on crosslinked chitosan beads for different medicinal purposes: mucoadhesive beads and their applications for eyes and the alimentary system, and polyelectrolyte complexes. Additional sections describe novel approaches to cell encapsulation for improved biocompatibility and immunoisolation. Emphasis is placed on methods using alginate–polylysine alginate for encapsulation, and a glimpse is provided of the art and science of artificial cells, encapsulated enzymes for the clinical laboratory, and encapsulation of living cells and tissues for biomedical purposes.


Calcium Alginate Human Mesenchymal Stem Cell Polyelectrolyte Complex Vaccine Delivery Chitosan Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham, S., Brahim, S., Ishihara, K., and Guiseppi-Elie, A. 2005. Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 26:4767–4778.Google Scholar
  2. Aebischer, P., Wahlberg, L., Tresco, P. A., and Winn, S. R. 1991. Macroencapsulation of dopamine secreting cells by coextrusion with an organic polymer solution. Biomaterials 12:50–56.Google Scholar
  3. Akiyama, Y., Nagahara, N., Kashihara, T., Hirai, S., and Toguchi, H. 1995. In vitro and in vivo evaluation of mucoadhesive microspheres prepared for the gastrointestinal tract using polyglycerol esters of fatty acids and poly(acrylic acid). Pharm. Res. 12:397–405.Google Scholar
  4. Albrektsson, T., and Johansson, C. 2001. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10:S96–S101.Google Scholar
  5. Anderson, D., Nguyen, T., and Amiji, M. 1999. Chitosan-pluronic interpenetrating network: membrane fabrication and protein permeability studies. In: Polysaccharide Applications, Cosmetics and Pharmaceuticals, ed. M. A. El-Nokaly, H. A. Soini, pp. 178–186. Washington, DC: American Chemical Society.Google Scholar
  6. Bahar, T., and Tuncel, A. 2000. Immobilization of α-chymotrypsin onto newly produced poly(hydroxypropyl methacrylate-comethacrylic acid) hydrogel beads. React. Funct. Polym. 44:71–78.Google Scholar
  7. Bahar, T., and Tuncel, A. 2004. Concanavalin A attached poly(p-chloromethylstyrene) beads for glycoenzyme separation. J. Appl. Polym. Sci. 92:2116–2124.Google Scholar
  8. Balakrishnan, B., Kumar, D. S., Yoshida, Y., and Jayakrishnan, A. 2005. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials 26:3495–3502.Google Scholar
  9. Barrias, C. C., Riberio, C. C., Lamghari, M., Miranda, C. S., and Barbosa, M. A. 2005. Proliferation, activity and osteogenic differentiation of bone marrow stromal cells cultured on titanium phosphate microspheres. J. Biomed. Mater. Res. A 72:57–66.Google Scholar
  10. Batorsky, A., Liao, J., Lund, A. W., Plopper, G. E., and Stegemann, J. P. 2005. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol. Bioeng. 92:492–500.Google Scholar
  11. Bergers, G., and Benjamin, L. E. 2003. Tumorigenesis and the angiogenic switch. Nat. Rev. 3: 401–410.Google Scholar
  12. Botchwey, E. A., Pollack, S. R., Levine, E. M., and Laurencin, C. T. 2001. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J. Biomed. Mater. Res. 55: 242–253.Google Scholar
  13. Bowersock, T. L., Hogenesch, H., Suckow, M., Porter, R. E., Jackson, R., Park, H., and Park, K. J. 1996. Oral vaccination hydrogel systems. J. Contr. Rel. 39:209–220.Google Scholar
  14. Broome, R. L., and Brooks, D. L. 1991. Efficacy of enrofloxacin in the treatment of respiratory pasteurellosis in rabbits. Lab. Anim. Sci. 41:572–576.Google Scholar
  15. Campioni, E. G., Nobrega, J. N., and Stefon, M. V. 1998. HEMA/MMMA microcapsule implants in hemiparkinsonian rat brain: biocompatibility assessment using (3H)PK11195 as a marker for gliosis. Biomaterials 19:829–837.Google Scholar
  16. Carmeliet, P. 2000. Mechanism of angiogenesis and arteriogenesis. Nat. Med. 6:389–395.Google Scholar
  17. Cer, E., Gurpınar, O. A., Onur, M. O., and Tuncel, A. 2007. Polyethylene glycol-based cationically charged hydrogel beads as a new microcarrier for cell culture. J. Biomed. Mater. Res. B: Appl. Biomater. 80B:406.Google Scholar
  18. Choy, Y. B., Park J. H., McCarey, B. E., Edelhauser, H. F., and Prausnitz, M. R. 2008. Mucoadhesive microdiscs engineered for ophthalmic drug delivery: effect of particle geometry and formulation on preocular residence time. Invest. Ophthalmol. Vis. Sci. 49: 4808–4815.Google Scholar
  19. Chu, C. H., Saiyama, T., and Yano, T. 1995. pH-sensitive swelling polyelectrolyte complex gel prepared from xanthan and chitosan. Biosci. Biotechnol. Biochem. 59:717–719.Google Scholar
  20. Crooks, C. A., Douglas, J. A., Broughton, R. L., and Stefton, M. V. 1990. Microencapsulation of mammalian cells in a HEMA-MMA copolymer: effects on capsule morphology and permeability. Biomed. Mater. Res. 24:1241–1262.Google Scholar
  21. Davis, G. E., Black, S. M., and Bayless, K. J. 2000. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell. Dev. Biol. Anim. 36:513–519.Google Scholar
  22. De Clercq, E., and Field, H. J. 2006. Antiviral prodrugs—the development of successful prodrug strategies for antiviral chemotherapy. Br. J. Pharmacol. 147:1–11.Google Scholar
  23. DeLong, D., and Manning, P. J. 1994. The Biology of the Laboratory Rabbit, p. 131. Orlando, FL: Academic.Google Scholar
  24. Dhaliwal, S., Jain, S., Singh, H. P., and Tiwary, A. K. 2008. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation. AAPS J. 10:322–330.Google Scholar
  25. Dixit, V., and Gitnick, G. 1995. Transplantation of microencapsulated hepatocytes for liver function replacement. J. Biomater. Sci. Polym. Edn. 7:343–351.Google Scholar
  26. Doddy, F. F., Glickman, L. T., Glickman, N. W., and Janovitz, E. B. 1996. Feline fibrosarcomas at vaccination sites and non-vaccination sites. J. Comp. Pathol. 114:165–174.Google Scholar
  27. Fleming, J. E., Cornell, C. E., and Muscher, G. E. 2000. Bone cells and matrices in orthopedic tissue engineering. Orthop. Clin. North Am. 31:357–376.Google Scholar
  28. Folkman, J., and Haudenschild, C. 1980. Angiogenesis in vitro. Nature 288:551–556.Google Scholar
  29. Frank, S. G. 1975. Inclusion compounds. J. Pharm. Sci. 64:1585–1604.Google Scholar
  30. Gagnon, E., Cattaruzzi, P., Griffith, M., Muzakare, L., LeFlao, K., Faure, R., Beliveau, R., Hussain, S. N., Koutsilieris, M., and Doillon, C. J. 2002. Human vascular endothelial cells with life spans: in vitro cell response, protein expression, and angiogenesis. Angiogenesis 5: 21–33.Google Scholar
  31. Gomes, M. E., Riberio, A. S., Malafaya, P. B., Reis, R. L., and Cunha, A. M. 2001. A new approach based on injection molding to produce biodegradable starch based polymeric scaffolds: morphology, mechanical and degradation behavior. Biomaterials 22:883–889.Google Scholar
  32. Haralabopoulos, G. C., Grant, D. S., Kleinman, H. K., and Maragoudakis, M. E. 1997. Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am. J. Physiol. 273:C239–C245.Google Scholar
  33. Hendrick, M. J., Kass, L. D., McGill, L. D., and Tizard, I. R. 1994. Postvaccinal sarcomas in cats. J. Nat. Cancer Inst. 86:341–343.Google Scholar
  34. Hisano, S., Morikawa, N., Iwata, H., and Ikada, Y. 1998. Entrapment of islets into reversible disulfide hydrogels. J. Biomed. Mater. Res. 40:115–123.Google Scholar
  35. Hugerth, A., Caram-Lelham, N., and Sundelof, L. O. 1997. The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan. Carbohydr. Polym. 34:149–156.Google Scholar
  36. Ichimura, K. 1981. Polyvinyl alcohol-styrylpyridinium photosensitive resins and method for manufacture thereof. U.S. Patent #4,272,620.Google Scholar
  37. Ichimura, K., and Watanabe, S. 1982. Preparation and characteristics of photocross-linkable poly(vinyl alcohol). J. Polym. Sci. Polym. Chem. Edn. 20:1419–1432.Google Scholar
  38. Itoyama, K., and Tokura,S. 1994. Adsorption behavior of lysozyme onto carboxylated chitosan beads. Sen-i Gakkaishi 50:118–123.Google Scholar
  39. Iwata, H. 2001. Encapsulation of cells in hydrogels. In: Gels Handbook, Vol. 3, Applications, ed. Y. Osada, K. Kajiwara, pp. 248–258. San Diego and San Francisco: Academic.Google Scholar
  40. Iwata, H., Amemiya, H., and Akutsu, T. 1990a. N-isopropylacrylamide and methacrylate copolymer for encapsulation of islets. Artif. Organs 14:7–10.Google Scholar
  41. Iwata, H., Amemiya, H., Hayashi, R., Fujii, S., and Akutsu, T. 1990b. The use of photocrosslinkable polyvinyl alcohol in the immunoisolation of pancreatic islets. Transpl. Proc. 22:797–799.Google Scholar
  42. Iwata, H., Amemiya, H., Matsuda, T., Takano, H., Hayashi, R., and Akutsu, T. 1989. Evaluation of microencapsulated islets in agarose gel as bioartificial pancreas by studies of hormone secretion in culture and by xenotransplantation. Diabetes 28:224-225.Google Scholar
  43. Iwata, H., Takagi, T., Amemiya, H., Shimizu, H., Yamashita, K., Kobayashi, K., and Akutsu, T. 1992. Agarose for a bioartificial pancreas. J. Biomed. Mater. 26:967–977.Google Scholar
  44. Keil, D. J., and Fenwick, B. J. 1998. Role of Bordetella bronchiseptica in infectious tracheobronchitis in dogs. J. Am. Vet. Med. Assoc. 212:200–207.Google Scholar
  45. Kesenci, K., Tuncel, A., and Piskin, E. 1996. Swellable ethylene glycol dimethacrylate-hydroxyethylmethacrylate copolymer beads. React. Funct. Polym. 31:137–147.Google Scholar
  46. Kramer, T. T., Roof, M. B., and Matheson, R. R. 1992. Safety and efficacy of an attenuated strain of Salmonella choleraesuis for vaccination of swine. J. Vet. Res. 53:444–448.Google Scholar
  47. Kurita, K. 1986. Chemical modifications of chitin and chitosan. In: Chitin in Nature and Technology, ed. R. Muzzarelli, G. Jeaniaux, G. W. Gooday, pp. 287–293. New York: Plenum Press.Google Scholar
  48. Kwon, Y. J., and Peng, C. A. 2002. Calcium alginate gel beads crosslinked with gelatin as microcarrier for anchorage dependent cell culture. Biotechniques 33:212–217.Google Scholar
  49. Lanza, R. P., Ecker, D., Kuhtreiber, W. M., Staruk, J. E., Marsh, J., and Chick, W. L. 1995. A simple method for transplanting discordant islets into rats using alginate gel spheres. Transplantation 59:1485–1487.Google Scholar
  50. Lim, F., and Sun, A. M. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910.Google Scholar
  51. Liu, C. C., and Wu, S. C. 2004. Mosquito and mammalian cells grown on microcarriers for four-serotype dengue virus production: variations in virus titer, plaque morphology and replication rate. Biotechnol. Bioeng. 85:482–488.Google Scholar
  52. Lu, X. J., Cong, W., and Quyang, F. 2002. A cone-disc atomizer for production of biocompatible magnetic microcapsules for culture of anchorage-dependent mammalian cells. Biotechnol. Lett. 24:825–830.Google Scholar
  53. Lu, Y. S., Afendis, S. J., and Pakes, S. P. 1988. Identification of immunogenic outer membrane proteins of Pasteurella multocida 3:A in rabbits. Infect. Immun. 56:1532–1537.Google Scholar
  54. Lund, A. W., Bush, J. A., Plopper, G. E., and Stegemann, J. P. 2008. Osteogenic differentiation of mesenchymal stem cells in defined protein beads. J. Biomed. Mater. Res. B Appl. Biomater. 87B:213–221.Google Scholar
  55. Malda, J., Kreijveld, E., Temenoff, J. S., van Bliterswijk, C. A., and Riesle, J. 2003. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials 24:5153–5161.Google Scholar
  56. Manning, P. J. 1984. Naturally occurring pasteurellosis in laboratory rabbits: chemical and serological studies on whole cells and lipopolysaccharides of Pasteurella multocida. Infect. Immun. 44:502–507.Google Scholar
  57. Martineau, L., and Doillon, C. J. 2007. Angiogenic response of endothelial cells seeded dispersed versus on beads in fibrin gels. Angiogenesis 10:269–277.Google Scholar
  58. Mathowitz, E., Jacobs, J. S., Jong, Y. S., Carino, G. P., Chickering, D. E., Chaturvedi, P., Santos, C. A., Vijayaraghavan, K., Montgomery, S., Bassett, M., and Morrell, C. 1997. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:410–414.Google Scholar
  59. Matthew, H. W. T., Salley, S. O., Peterson, W. D., Deshmukh, D. R., Mukhopadhyay, A., and Klein, M. D. 1991. Microencapsulated hepatocytes. Prospects for extracorporeal liver support. ASAIO Trans. 37: M328–330.Google Scholar
  60. Mittereger, R., Vogt, G., Rossmanith, E., and Falkenhagen, D. 1999. Rotary cell culture system (RCCS): a new method for cultivating hepatoctyes on microcarriers. Int. J. Artif. Organs 22:816–822.Google Scholar
  61. Moran, E. A. 1999. A microcarrier based cell culture process for the production of a bovine respiratory syncytial virus vaccine. Cytotechnology 29:135–148.Google Scholar
  62. Mougin, K., Ham, A. S., Lawrence, M. B., Fernandez, E. J., and Hillier, A. C. 2005. Construction of tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics. Langmuir 21:4809–4812.Google Scholar
  63. Munarin, F., Petrini, P., Fare, S., and Tanzi, M. C. 2010. Structural properties of polysaccharide-based microcapsules for soft tissue regeneration. J. Mater. Sci. Mater. Med. 21:365–375.Google Scholar
  64. Murrani, A. M., Farr, S. J., and Kellaway, I. W. 1995. Precorneal clearance of mucoadhesive microspheres from the rabbit eye. J. Pharm. Pharmacol. 47:581–584.Google Scholar
  65. Muzzarelli, R. A. A., and Rocchetti, R. 1974. The use of chitosan columns for the removal of mercury from waters. J. Chromatogr. 96:115–121.Google Scholar
  66. Nakatsu, M. N., Sainson, R. C. A., Aoto, J. N., Taylor, K. L., Aitkenhead, M., Perez-del-Pulgar, S., Carpenter, P. M., and Hughes, C. C. W. 2003. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVECs) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66:102–112.Google Scholar
  67. Nehls, V., and Drenckhahn, D. 1995. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc. Res. 50:311–322.Google Scholar
  68. Orban, J. M., Marra, K. G., and Hollinger, J. O. 2002. Composition options for tissue-engineered bone. Tissue Eng. 8:529–539.Google Scholar
  69. Overstreet, M., Sohrabi, A., Polotsky, A., Hungerford, D. S., and Frondoza, C. G. 2003. Collagen microcarrier spinner culture promotes osteoblast proliferation and synthesis of matrix proteins. In Vıtro Cell. Dev. Biol. Anim. 39:228–234.Google Scholar
  70. Patil, S. B., and Sawant, K. K. 2008. Mucoadhesive microspheres: a promising tool in drug delivery. Curr. Drug Deliv. 5:312–318.Google Scholar
  71. Perka, C., Schultz, O., Spitzer, R. S., Lindenhayn, K., Burmester, G. R., and Sittinger, M. 2000. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21:1145–1153.Google Scholar
  72. Peter, S. J., Lu, L., Kim, D. J., and Mikos, A. J. 2000. Marrow stromal osteoblast function on a poly(propylene fumarate)/β-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21:1207–1213.Google Scholar
  73. Qiu, B., Stefanos, S., Ma, J., Lalloo, A., Perry, B. A., Leibowitz, M. J., Sinko, P. J., and Stein, S. 2003. A hydrogel prepared by in situ cross-linking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery. Biomaterials 24: 11–18.Google Scholar
  74. Quan, J. S., Jiang, H. L., Kim, E. M., Jeong, H. J., Choi, Y. J., Guo, D. D., Yoo, M. K., Lee, H. G., and Cho, C. S. 2008. pH-sensitive and mucoadhesive thiolated Eudragit-coated chitosan microspheres. Int. J. Pharm. 359:205–210.Google Scholar
  75. Qui, Q. Q., Ducheyne, P., and Ayyaswamy, P. S. 1999. Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors. Biomaterials 20:989–1001.Google Scholar
  76. Qui, Q. Q., Ducheyne, P., and Ayyaswamy, P. S. 2000. New bioactive degradable composite microspheres as tissue engineering substrates. J. Biomed. Mater. Res. 52:66–76.Google Scholar
  77. Ringler, D. H., Peter, G. K., Chrisp, C. E., and Keren, D. F. 1985. Protection of rabbits against experimental pasteurellosis by vaccination with a potassium thiocyanate extract of Pasteurella multocida. Infect. Immun. 49:498–504.Google Scholar
  78. Sakairi, N., Nishi, N., and Tokura, S. 1999. Cyclodextrin-linked chitosan: synthesis and inclusion complexation abilities. In: Polysaccharide Applications, Cosmetics and Pharmaceuticals, ed. M. A. El-Nokaly, H. A. Soini, pp. 68–84. Washington, DC: American Chemical Society.Google Scholar
  79. Sakata, M., Kato, D., Uchida, M., Todokoro, M., Mizokami, H., Furukawa, S., Kunitake, M., and Hirayama, C. 2000. Effect of pKa of polymer microcarriers on growth of mouse L cell. Chem. Lett. 9:1056–1057.Google Scholar
  80. Sakiyama, T., Chu, T. H., Fujii, T., and Yano, T. 1993. Preparation of a polyelectrolyte complex gel from chitosan and κ-carrageenan and its pH-sensitive swelling. J. Appl. Polym. Sci. 50: 2021–2025.Google Scholar
  81. Salgado, A. J., Coutinho, O. P., and Reis, R. L. 2004. Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 4:743–765.Google Scholar
  82. Schlick, S. 1986. Binding sites of Cu(II) in chitin and chitosan. An electron spin resonance study. Macromolecules 19:192–195.Google Scholar
  83. Schultze-Werninghaus, G., and Meier-Sydow, J. 1982. The clinical and pharmacological history of theophylline: first report on the bronchospasmolytic action in man by S. R. Hirsch in Frankfurt (Main) 1922. Clin. Allergy 12:211–215.Google Scholar
  84. Sell, S. 2004. Stem Cell Handbook. Totowa, NJ: Humana.Google Scholar
  85. Senel, S., Cicek, H., and Tuncel, A. 1998. Production and characterization of poly(ethylene glycol dimethacrylate-styrene-glycidyl methacrylate) microbeads. J. Appl. Polym. Sci. 67: 1319–1334.Google Scholar
  86. Solchaga, L. A., Dennis, J. E., Goldberg, V. M., and Caplan, A. I. 1999. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J. Orthop. Res. 17:205–213.Google Scholar
  87. Suckow, M. A., Bowersock, T. L., Nielsen, K., and Grigdesby, C. F. 1996a. Enhancement of respiratory immunity to Pasteurella multocida by cholera toxin in rabbits. Lab. Anim. 30:120–126.Google Scholar
  88. Suckow, M. A., Martin, B. J., Bowersock, T. L., and Douglas, F. A. 1996b. Derivation of Pasteurella multocida-free rabbit litters by enrofloxacin treatment. Vet. Microbiol. 51:161–168.Google Scholar
  89. Suckow, M. A., Siger, L., Bowersock, T. L., Turek, J. J., Van Horne, D., Borie, D., Taylor, A., Park, H., and Park, K. 1999. Alginate microparticles for vaccine delivery. In: Polysaccharide Applications, Cosmetics and Pharmaceuticals, ed. M. A. El-Nokaly, H. A. Soini, pp. 1–14. Washington, DC: American Chemical Society.Google Scholar
  90. Sun, A. M., O’Shea, G. M., and Goosen, M. F. A. 1983. Injectable biocompatible islet microcapsules as a bioartificial pancreas. In: Progress in Artificial Organs, ed. K. Atsumi, M. Maekawa, K. Ota, pp. 769–772. Cleveland, OH: ISAO Press.Google Scholar
  91. Sun, X. M., Zhang, Y. X., Tan, W. S., Zhou, Y. J., and Hua, P. 2000. Attachment kinetics of vero cells onto CT-3 microcarriers. J. Biosci. Bioeng. 90:32–36.Google Scholar
  92. Tomida, H., Nakamura, C., and Kiryu, S. 1994. A novel method for the preparation of controlled-release theophylline capsules coated with a polyelectrolyte complex of κ-carrageenan and chitosan. Chem. Pharm. Bull. 42:979–981.Google Scholar
  93. Tuncel, A. 2000. Suspension polymerization of poly(ethylene glycol) methacrylate: a route for swellable spherical gel beads with controlled hydrophilicity and functionality. Colloid Polym. Sci. 278:1126–1138.Google Scholar
  94. Tuncel, A., and Cicek, H. 2000. 2-Hydroxypropylmethacrylate based mono and bifunctional gel beads prepared by suspension polymerization. Polym. Int. 49:485–494.Google Scholar
  95. Tuncel, A., Ecevit, K., Kesenci, K., and Piskin, E. 1996. Nonswellable and swellable ethylene glycol dimethacrylate-acrylic acid copolymer microspheres. J. Polym. Sci. A Polym. Chem. 34:45–55.Google Scholar
  96. Tuncel, A., and Piskin, E. 1996. Nonswellable and swellable poly(EGDMA) microspheres. J. Appl. Polym. Sci. 62:789–798.Google Scholar
  97. Unsal, E., Bahar, T., Tuncel, M., and Tuncel, A. 2000. DNA adsorption onto polyethylenimine attached poly(p-chloromethylstyrene) beads. J. Chromatogr. A 898:167–177.Google Scholar
  98. Vailhe, B., Vittet, D., and Feige, J. J. 2001. In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81:439–452.Google Scholar
  99. Wang, N., Adams, G., Buttery, L., Falcone, F. H., and Stolnik, S. 2009. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J. Biotechnol. 144:304–312.Google Scholar
  100. Xiao, Y., Qian, H., Young, W. G., and Bartold, P. M. 2003. Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds. Tissue Eng. 9:1167–1177.Google Scholar
  101. Xu, T., Li, S. L., Pan, J. L., and Yu, Y. T. 1999. Preparation and hepatocyte culture on agar-based microcarriers. Chem. J. Chin. Univ. 20:1230–1232.Google Scholar
  102. Zecchini, T. A., and Smith, R. J. 1999. Production of high titre disabled infectious single cycle (DISC) HSV from a microcarrier culture. Cytotechnology 30:203–210.Google Scholar
  103. Zekorn, T., Horcher, A., Siebers, U., Schnettler, R., Klock, G., Hering, B., Zimmermann, U., Bretzel, R. G., and Federlin, K. 1992. Barium-cross-linked alginate beads: a simple, one-step method for successful immuno-isolated transplantation of islets of Langerhans. Acta Diabetol. 29:99–106.Google Scholar
  104. Zhang, J. M., Wang, H. F., and Feng, M. F. 2001. Static three dimensional culture of human hepatocarcinoma cell with microcarriers. Chin. Sci. Bull. 46:1704–1709.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Biochemistry, Food Science and Human Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations